These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19847028)

  • 1. Friction-induced nanofabrication on monocrystalline silicon.
    Yu B; Dong H; Qian L; Chen Y; Yu J; Zhou Z
    Nanotechnology; 2009 Nov; 20(46):465303. PubMed ID: 19847028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Friction-induced nanofabrication method to produce protrusive nanostructures on quartz.
    Song C; Li X; Yu B; Dong H; Qian L; Zhou Z
    Nanoscale Res Lett; 2011 Apr; 6(1):310. PubMed ID: 21711819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon.
    Yu B; Qian L
    Nanoscale Res Lett; 2013 Mar; 8(1):137. PubMed ID: 23522360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of hierarchical micro/nanostructures via scanning probe lithography and wet chemical etching.
    Choi I; Kim Y; Yi J
    Ultramicroscopy; 2008 Sep; 108(10):1205-9. PubMed ID: 18583055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching.
    Jin C; Yu B; Xiao C; Chen L; Qian L
    Nanoscale Res Lett; 2016 Dec; 11(1):229. PubMed ID: 27119157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction-induced selective etching on silicon by TMAH solution.
    Zhou C; Li J; Wu L; Guo G; Wang H; Chen P; Yu B; Qian L
    RSC Adv; 2018 Oct; 8(63):36043-36048. PubMed ID: 35558468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time nanofabrication with high-speed atomic force microscopy.
    Vicary JA; Miles MJ
    Nanotechnology; 2009 Mar; 20(9):095302. PubMed ID: 19417485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured biosensing platform-shadow edge lithography for high-throughput nanofabrication.
    Bai JG; Yeo WH; Chung JH
    Lab Chip; 2009 Feb; 9(3):449-55. PubMed ID: 19156295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask.
    Guo J; Yu B; Wang X; Qian L
    Nanoscale Res Lett; 2014; 9(1):241. PubMed ID: 24940174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of complex metallic nanostructures by nanoskiving.
    Xu Q; Rioux RM; Whitesides GM
    ACS Nano; 2007 Oct; 1(3):215-27. PubMed ID: 19206652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip.
    Chung KH; Lee YH; Kim DE
    Ultramicroscopy; 2005 Jan; 102(2):161-71. PubMed ID: 15590139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct nanofabrication of copper on silicon substrate by electrochemical atomic force microscope lithography.
    Kwon G; Lee H
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7076-9. PubMed ID: 19908731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved nanofabrication through guided transient liquefaction.
    Chou SY; Xia Q
    Nat Nanotechnol; 2008 May; 3(5):295-300. PubMed ID: 18654527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A control approach to high-speed probe-based nanofabrication.
    Yan Y; Zou Q; Lin Z
    Nanotechnology; 2009 Apr; 20(17):175301. PubMed ID: 19420589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM.
    Gao G; Cannara RJ; Carpick RW; Harrison JA
    Langmuir; 2007 May; 23(10):5394-405. PubMed ID: 17407330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amontonian friction induced by flexible surface features on microstructured silicon.
    Thormann E; Yun SH; Claesson PM; Linnros J
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3432-9. PubMed ID: 21830774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching.
    Song C; Li X; Cui S; Dong H; Yu B; Qian L
    Nanoscale Res Lett; 2013 Mar; 8(1):140. PubMed ID: 23531381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of cyclotriphosphazenes containing silicon as single solid-state precursors for the formation of silicon/phosphorus nanostructured materials.
    Díaz C; Valenzuela ML; Bravo D; Lavayen V; O'Dwyer C
    Inorg Chem; 2008 Dec; 47(24):11561-9. PubMed ID: 18975936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.