These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19847031)

  • 1. Temperature-induced restructuring of self-assembled PtPd nanoparticle superlattices.
    Ren G; Xing Y
    Nanotechnology; 2009 Nov; 20(46):465604. PubMed ID: 19847031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of highly ordered rectangular nanoparticle superlattices by the cooperative self-assembly of nanoparticles and fatty molecules.
    Harada T; Hatton TA
    Langmuir; 2009 Jun; 25(11):6407-12. PubMed ID: 19466789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.
    Isojima T; Suh SK; Vander Sande JB; Hatton TA
    Langmuir; 2009 Jul; 25(14):8292-8. PubMed ID: 19435297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interparticle spacing control in the superlattices of carboxylic acid-capped gold nanoparticles by hydrogen-bonding mediation.
    Yao H; Kojima H; Sato S; Kimura K
    Langmuir; 2004 Nov; 20(23):10317-23. PubMed ID: 15518531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal behavior and film formation from an organogermanium polymer/nanoparticle precursor.
    Chiu HW; Kauzlarich SM; Sutter E
    Langmuir; 2006 Jun; 22(12):5455-8. PubMed ID: 16732677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets.
    Cheng W; Park N; Walter MT; Hartman MR; Luo D
    Nat Nanotechnol; 2008 Nov; 3(11):682-90. PubMed ID: 18989335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of FePt nanoparticles having high coercivity.
    Rutledge RD; Morris WH; Wellons MS; Gai Z; Shen J; Bentley J; Wittig JE; Lukehart CM
    J Am Chem Soc; 2006 Nov; 128(44):14210-1. PubMed ID: 17076466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEM-induced structural evolution in amorphous Fe oxide nanoparticles.
    Latham AH; Wilson MJ; Schiffer P; Williams ME
    J Am Chem Soc; 2006 Oct; 128(39):12632-3. PubMed ID: 17002341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance.
    Brezesinski T; Rohlfing DF; Sallard S; Antonietti M; Smarsly BM
    Small; 2006 Oct; 2(10):1203-11. PubMed ID: 17193590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of dendrimer-encapsulated nanoparticle arrays using 2-D microbial S-layer protein biotemplates.
    Mark SS; Bergkvist M; Yang X; Angert ER; Batt CA
    Biomacromolecules; 2006 Jun; 7(6):1884-97. PubMed ID: 16768411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic mediator-induced structural transformation in superlattices of monolayer-protected gold nanoparticles.
    Yao H; Kuriyama A; Minami T; Kimura K
    J Colloid Interface Sci; 2011 Feb; 354(1):55-60. PubMed ID: 21074166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocrystal superlattices that exhibit improved order on heating: an example of inverse melting?
    Yu Y; Jain A; Guillaussier A; Voggu VR; Truskett TM; Smilgies DM; Korgel BA
    Faraday Discuss; 2015; 181():181-92. PubMed ID: 25930234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release.
    Papadimitriou S; Bikiaris D
    J Control Release; 2009 Sep; 138(2):177-84. PubMed ID: 19446585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of nanoparticle coalescence under high-temperature annealing.
    Mizuno M; Sasaki Y; Yu AC; Inoue M
    Langmuir; 2004 Dec; 20(26):11305-7. PubMed ID: 15595749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of organic monolayers on aerosolized silicon nanoparticles.
    Liao YC; Roberts JT
    J Am Chem Soc; 2006 Jul; 128(28):9061-5. PubMed ID: 16834379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembling nonspherical 2D binary nanoparticle superlattices by opposite electrical charges: the role of Coulomb forces.
    Sun Z; Luo Z; Fang J
    ACS Nano; 2010 Apr; 4(4):1821-8. PubMed ID: 20349938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Co(x)Pt(1-x) alloy nanoparticles of different phase by micellar technique and their properties study.
    Mandal M; Das B; Mandal K
    J Colloid Interface Sci; 2009 Jul; 335(1):40-3. PubMed ID: 19403140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature.
    Limaye MV; Singh SB; Date SK; Kothari D; Reddy VR; Gupta A; Sathe V; Choudhary RJ; Kulkarni SK
    J Phys Chem B; 2009 Jul; 113(27):9070-6. PubMed ID: 19522478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-induced phase transitions of the ordered superlattice assembly of Au nanoclusters.
    Chaki NK; Vijayamohanan KP
    J Phys Chem B; 2005 Feb; 109(7):2552-8. PubMed ID: 16851256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.