These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19847102)

  • 1. Floral organ size control: interplay between organ identity, developmental compartments and compensation mechanisms.
    Delgado-Benarroch L; Weiss J; Egea-Cortines M
    Plant Signal Behav; 2009 Sep; 4(9):814-7. PubMed ID: 19847102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mutants compacta ähnlich, Nitida and Grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus.
    Delgado-Benarroch L; Weiss J; Egea-Cortines M
    J Plant Res; 2009 Sep; 122(5):559-69. PubMed ID: 19412653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FORMOSA controls cell division and expansion during floral development in Antirrhinum majus.
    Delgado-Benarroch L; Causier B; Weiss J; Egea-Cortines M
    Planta; 2009 May; 229(6):1219-29. PubMed ID: 19271234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic control of floral size and proportions.
    Weiss J; Delgado-Benarroch L; Egea-Cortines M
    Int J Dev Biol; 2005; 49(5-6):513-25. PubMed ID: 16096961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.
    Krizek B
    Plant Physiol; 2009 Aug; 150(4):1916-29. PubMed ID: 19542297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamical phyllotaxis model to determine floral organ number.
    Kitazawa MS; Fujimoto K
    PLoS Comput Biol; 2015 May; 11(5):e1004145. PubMed ID: 25950739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and identification of a novel mutant fon(t) on floral organ number and floral organ identity in rice.
    Li Y; Xu P; Zhang H; Peng H; Zhang Q; Wang X; Wu X
    J Genet Genomics; 2007 Aug; 34(8):730-7. PubMed ID: 17707217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.
    Hepworth SR; Klenz JE; Haughn GW
    Planta; 2006 Mar; 223(4):769-78. PubMed ID: 16244866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floral and inflorescence morphology and ontogeny in Beta vulgaris, with special emphasis on the ovary position.
    Olvera HF; Smets E; Vrijdaghs A
    Ann Bot; 2008 Oct; 102(4):643-51. PubMed ID: 18694878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution and genetic control of the floral ground plan.
    Smyth DR
    New Phytol; 2018 Oct; 220(1):70-86. PubMed ID: 29959892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form.
    Krizek BA; Blakley IC; Ho YY; Freese N; Loraine AE
    Plant J; 2020 Jul; 103(2):752-768. PubMed ID: 32279407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flower development in pisum sativum: from the war of the whorls to the battle of the common primordia.
    Ferrandiz C; Navarro C; Gomez MD; Canas LA; Beltran JP
    Dev Genet; 1999 Sep; 25(3):280-90. PubMed ID: 10528268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Factor Linking Floral Organ Identity and Growth Revealed by Characterization of the Tomato Mutant
    Poyatos-Pertíñez S; Quinet M; Ortíz-Atienza A; Yuste-Lisbona FJ; Pons C; Giménez E; Angosto T; Granell A; Capel J; Lozano R
    Front Plant Sci; 2016; 7():1648. PubMed ID: 27872633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
    Bemis SM; Lee JS; Shpak ED; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice.
    Xiao H; Tang J; Li Y; Wang W; Li X; Jin L; Xie R; Luo H; Zhao X; Meng Z; He G; Zhu L
    Plant J; 2009 Sep; 59(5):789-801. PubMed ID: 19453444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative floral development in Lithospermum (Boraginaceae) and implications for the evolution and development of heterostyly.
    Cohen JI; Litt A; Davis JI
    Am J Bot; 2012 May; 99(5):797-805. PubMed ID: 22494907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony.
    Endress PK
    Ann Bot; 2010 Nov; 106(5):687-95. PubMed ID: 20802050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.
    Yu L; Patibanda V; Smith HM
    Planta; 2009 Feb; 229(3):693-707. PubMed ID: 19082619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis.
    Zhao XY; Cheng ZJ; Zhang XS
    Planta; 2006 Mar; 223(4):698-707. PubMed ID: 16177912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1.
    Suzaki T; Sato M; Ashikari M; Miyoshi M; Nagato Y; Hirano HY
    Development; 2004 Nov; 131(22):5649-57. PubMed ID: 15509765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.