These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19847151)

  • 1. Electrospinning fibrous polymer scaffolds for tissue engineering and cell culture.
    Ifkovits JL; Sundararaghavan HG; Burdick JA
    J Vis Exp; 2009 Oct; (32):. PubMed ID: 19847151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun fibrous scaffolds with multiscale and photopatterned porosity.
    Sundararaghavan HG; Metter RB; Burdick JA
    Macromol Biosci; 2010 Mar; 10(3):265-70. PubMed ID: 20014198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinning of photocrosslinked and degradable fibrous scaffolds.
    Tan AR; Ifkovits JL; Baker BM; Brey DM; Mauck RL; Burdick JA
    J Biomed Mater Res A; 2008 Dec; 87(4):1034-43. PubMed ID: 18257065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.
    Leach JB; Schmidt CE
    Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells.
    Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties.
    Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradients with depth in electrospun fibrous scaffolds for directed cell behavior.
    Sundararaghavan HG; Burdick JA
    Biomacromolecules; 2011 Jun; 12(6):2344-50. PubMed ID: 21528921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks.
    Liang J; Guo Z; Timmerman A; Grijpma D; Poot A
    Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular encapsulation in 3D hydrogels for tissue engineering.
    Khetan S; Burdick J
    J Vis Exp; 2009 Oct; (32):. PubMed ID: 19855372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate).
    Ifkovits JL; Devlin JJ; Eng G; Martens TP; Vunjak-Novakovic G; Burdick JA
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1878-86. PubMed ID: 20160937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.
    Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA
    Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library.
    Metter RB; Ifkovits JL; Hou K; Vincent L; Hsu B; Wang L; Mauck RL; Burdick JA
    Acta Biomater; 2010 Apr; 6(4):1219-26. PubMed ID: 19853066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.
    Baker BM; Gee AO; Metter RB; Nathan AS; Marklein RA; Burdick JA; Mauck RL
    Biomaterials; 2008 May; 29(15):2348-58. PubMed ID: 18313138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions.
    Bongiovanni Abel S; Montini Ballarin F; Abraham GA
    Nanotechnology; 2020 Apr; 31(17):172002. PubMed ID: 31931493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering.
    Jana S; Bhagia A; Lerman A
    Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid manufacturing strategies for tissue engineering scaffolds using methacrylate functionalised poly(glycerol sebacate).
    Pashneh-Tala S; Moorehead R; Claeyssens F
    J Biomater Appl; 2020 Mar; 34(8):1114-1130. PubMed ID: 31930937
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.