BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 19847266)

  • 1. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression.
    Naito K; Zhang F; Tsukiyama T; Saito H; Hancock CN; Richardson AO; Okumoto Y; Tanisaka T; Wessler SR
    Nature; 2009 Oct; 461(7267):1130-4. PubMed ID: 19847266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early embryogenesis-specific expression of the rice transposon Ping enhances amplification of the MITE mPing.
    Teramoto S; Tsukiyama T; Okumoto Y; Tanisaka T
    PLoS Genet; 2014 Jun; 10(6):e1004396. PubMed ID: 24921928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the genome-wide outcomes of a transposable element burst over decades of amplification.
    Lu L; Chen J; Robb SMC; Okumoto Y; Stajich JE; Wessler SR
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10550-E10559. PubMed ID: 29158416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dramatic amplification of a rice transposable element during recent domestication.
    Naito K; Cho E; Yang G; Campbell MA; Yano K; Okumoto Y; Tanisaka T; Wessler SR
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17620-5. PubMed ID: 17101970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic diversity generated by a transposable element burst in a rice recombinant inbred population.
    Chen J; Lu L; Robb SMC; Collin M; Okumoto Y; Stajich JE; Wessler SR
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26288-26297. PubMed ID: 33020276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice transposable elements are characterized by various methylation environments in the genome.
    Takata M; Kiyohara A; Takasu A; Kishima Y; Ohtsubo H; Sano Y
    BMC Genomics; 2007 Dec; 8():469. PubMed ID: 18093338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cDNA microarray analysis of rice anther genes under chilling stress at the microsporogenesis stage revealed two genes with DNA transposon Castaway in the 5'-flanking region.
    Yamaguchi T; Nakayama K; Hayashi T; Yazaki J; Kishimoto N; Kikuchi S; Koike S
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1315-23. PubMed ID: 15215597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An active DNA transposon family in rice.
    Jiang N; Bao Z; Zhang X; Hirochika H; Eddy SR; McCouch SR; Wessler SR
    Nature; 2003 Jan; 421(6919):163-7. PubMed ID: 12520302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobilization of a transposon in the rice genome.
    Nakazaki T; Okumoto Y; Horibata A; Yamahira S; Teraishi M; Nishida H; Inoue H; Tanisaka T
    Nature; 2003 Jan; 421(6919):170-2. PubMed ID: 12520304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of copy-number variation, insertional polymorphism, and methylation status of the tiniest class I (TRIM) and class II (MITE) transposable element families in various rice strains.
    Baruch O; Kashkush K
    Plant Cell Rep; 2012 May; 31(5):885-93. PubMed ID: 22183295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of MITE transposons mPing in different rice subspecies].
    Zhang N; Ruan Y; Wang S; Liu Y; Zhao C; Wang J; Wang K; Wang Y; Wang H
    Sheng Wu Gong Cheng Xue Bao; 2016 Sep; 32(9):1264-1272. PubMed ID: 29022327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mPing: The bursting transposon.
    Naito K; Monden Y; Yasuda K; Saito H; Okumoto Y
    Breed Sci; 2014 Jun; 64(2):109-14. PubMed ID: 25053919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of RelocaTE and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice.
    Robb SM; Lu L; Valencia E; Burnette JM; Okumoto Y; Wessler SR; Stajich JE
    G3 (Bethesda); 2013 Jun; 3(6):949-57. PubMed ID: 23576519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice.
    Chen J; Lu L; Benjamin J; Diaz S; Hancock CN; Stajich JE; Wessler SR
    Nat Commun; 2019 Feb; 10(1):641. PubMed ID: 30733435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica.
    Oki N; Yano K; Okumoto Y; Tsukiyama T; Teraishi M; Tanisaka T
    Genes Genet Syst; 2008 Aug; 83(4):321-9. PubMed ID: 18931457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana.
    Yang G; Zhang F; Hancock CN; Wessler SR
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10962-7. PubMed ID: 17578919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean.
    Hancock CN; Zhang F; Floyd K; Richardson AO; Lafayette P; Tucker D; Wessler SR; Parrott WA
    Plant Physiol; 2011 Oct; 157(2):552-62. PubMed ID: 21844309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low temperature-responsive changes in the anther transcriptome's repeat sequences are indicative of stress sensitivity and pollen sterility in rice strains.
    Ishiguro S; Ogasawara K; Fujino K; Sato Y; Kishima Y
    Plant Physiol; 2014 Feb; 164(2):671-82. PubMed ID: 24376281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nested insertions and accumulation of indels are negatively correlated with abundance of mutator-like transposable elements in maize and rice.
    Zhao D; Jiang N
    PLoS One; 2014; 9(1):e87069. PubMed ID: 24475224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an active miniature inverted-repeat transposable element mJing in rice.
    Tang Y; Ma X; Zhao S; Xue W; Zheng X; Sun H; Gu P; Zhu Z; Sun C; Liu F; Tan L
    Plant J; 2019 May; 98(4):639-653. PubMed ID: 30689248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.