These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19847635)

  • 21. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems.
    Rusu SI; Pennartz CMA
    Hippocampus; 2020 Jan; 30(1):73-98. PubMed ID: 31617622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Norepinephrine and dopamine as learning signals.
    Harley CW
    Neural Plast; 2004; 11(3-4):191-204. PubMed ID: 15656268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-organizing neural integrator predicts interval times through climbing activity.
    Durstewitz D
    J Neurosci; 2003 Jun; 23(12):5342-53. PubMed ID: 12832560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model.
    Lindahl M; Hellgren Kotaleski J
    eNeuro; 2016; 3(6):. PubMed ID: 28101525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential Encoding of Time by Prefrontal and Striatal Network Dynamics.
    Bakhurin KI; Goudar V; Shobe JL; Claar LD; Buonomano DV; Masmanidis SC
    J Neurosci; 2017 Jan; 37(4):854-870. PubMed ID: 28123021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of hippocampal manipulations on the classically conditioned nictitating membrane response: simulations by an attentional-associative model.
    Schmajuk NA; Moore JW
    Behav Brain Res; 1989 Mar; 32(2):173-89. PubMed ID: 2923660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks.
    Renart A; Song P; Wang XJ
    Neuron; 2003 May; 38(3):473-85. PubMed ID: 12741993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal-difference reinforcement learning with distributed representations.
    Kurth-Nelson Z; Redish AD
    PLoS One; 2009 Oct; 4(10):e7362. PubMed ID: 19841749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow manifolds within network dynamics encode working memory efficiently and robustly.
    Ghazizadeh E; Ching S
    PLoS Comput Biol; 2021 Sep; 17(9):e1009366. PubMed ID: 34525089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization.
    Wei Z; Wang XJ; Wang DH
    J Neurosci; 2012 Aug; 32(33):11228-40. PubMed ID: 22895707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biologically plausible model of time-scale invariant interval timing.
    Almeida R; Ledberg A
    J Comput Neurosci; 2010 Feb; 28(1):155-75. PubMed ID: 19862610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Neural representation of time].
    Tanaka M; Kunimatsu J; Ohmae S
    Brain Nerve; 2013 Aug; 65(8):941-8. PubMed ID: 23917496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulus representation and the timing of reward-prediction errors in models of the dopamine system.
    Ludvig EA; Sutton RS; Kehoe EJ
    Neural Comput; 2008 Dec; 20(12):3034-54. PubMed ID: 18624657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal decision making on the basis of evidence represented in spike trains.
    Zhang J; Bogacz R
    Neural Comput; 2010 May; 22(5):1113-48. PubMed ID: 20028228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuroanatomical and neurochemical substrates of timing.
    Coull JT; Cheng RK; Meck WH
    Neuropsychopharmacology; 2011 Jan; 36(1):3-25. PubMed ID: 20668434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network.
    Cone I; Shouval HZ
    Elife; 2021 Mar; 10():. PubMed ID: 33734085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A generalized LSTM-like training algorithm for second-order recurrent neural networks.
    Monner D; Reggia JA
    Neural Netw; 2012 Jan; 25(1):70-83. PubMed ID: 21803542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The amygdala: a potential player in timing CS-US intervals.
    Díaz-Mataix L; Tallot L; Doyère V
    Behav Processes; 2014 Jan; 101():112-22. PubMed ID: 23973708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.