These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19847635)

  • 41. A discrete approach for a model of temporal learning by the cerebellum: in silico classical conditioning of the eyeblink reflex.
    Garenne A; Chauvet GA
    J Integr Neurosci; 2004 Sep; 3(3):301-18. PubMed ID: 15366098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An implementation of reinforcement learning based on spike timing dependent plasticity.
    Roberts PD; Santiago RA; Lafferriere G
    Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A parametric fMRI investigation of context effects in sensorimotor timing and coordination.
    Jantzen KJ; Oullier O; Marshall M; Steinberg FL; Kelso JA
    Neuropsychologia; 2007 Mar; 45(4):673-84. PubMed ID: 17014871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experience-induced neural circuits that achieve high capacity.
    Feldman V; Valiant LG
    Neural Comput; 2009 Oct; 21(10):2715-54. PubMed ID: 19635015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.
    Durstewitz D; Seamans JK; Sejnowski TJ
    J Neurophysiol; 2000 Mar; 83(3):1733-50. PubMed ID: 10712493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Remembering the time: a continuous clock.
    Lewis PA; Miall RC
    Trends Cogn Sci; 2006 Sep; 10(9):401-6. PubMed ID: 16899395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Different brain circuits underlie motor and perceptual representations of temporal intervals.
    Bueti D; Walsh V; Frith C; Rees G
    J Cogn Neurosci; 2008 Feb; 20(2):204-14. PubMed ID: 18275329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Space, time and learning in the hippocampus: how fine spatial and temporal scales are expanded into population codes for behavioral control.
    Gorchetchnikov A; Grossberg S
    Neural Netw; 2007 Mar; 20(2):182-93. PubMed ID: 17222533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular information structures in the brain.
    Conrad M
    J Neurosci Res; 1976; 2(3):233-54. PubMed ID: 994251
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal difference models and reward-related learning in the human brain.
    O'Doherty JP; Dayan P; Friston K; Critchley H; Dolan RJ
    Neuron; 2003 Apr; 38(2):329-37. PubMed ID: 12718865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia.
    Baston C; Ursino M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6505-8. PubMed ID: 26737783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Learning of sequential movements by neural network model with dopamine-like reinforcement signal.
    Suri RE; Schultz W
    Exp Brain Res; 1998 Aug; 121(3):350-4. PubMed ID: 9746140
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cortico-striatal representation of time in animals and humans.
    Meck WH; Penney TB; Pouthas V
    Curr Opin Neurobiol; 2008 Apr; 18(2):145-52. PubMed ID: 18708142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks.
    Li H; Fan Y
    Neuroimage; 2019 Nov; 202():116059. PubMed ID: 31362049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Banishing the homunculus: making working memory work.
    Hazy TE; Frank MJ; O'Reilly RC
    Neuroscience; 2006 Apr; 139(1):105-18. PubMed ID: 16343792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.
    Schmitt M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):995-1001. PubMed ID: 15484876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A spiking neural network based on the basal ganglia functional anatomy.
    Baladron J; Hamker FH
    Neural Netw; 2015 Jul; 67():1-13. PubMed ID: 25863288
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A computational framework for cortical learning.
    Suri RE
    Biol Cybern; 2004 Jun; 90(6):400-9. PubMed ID: 15316786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.