BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 19847713)

  • 1. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.
    Tam YS; Elefsiniotis P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Oct; 44(12):1251-60. PubMed ID: 19847713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of blending of desalinated water with treated surface drinking water on copper and lead release.
    Liu H; Schonberger KD; Korshin GV; Ferguson JF; Meyerhofer P; Desormeaux E; Luckenbach H
    Water Res; 2010 Jul; 44(14):4057-66. PubMed ID: 20570313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Lead Release in a Simulated Lead-Free Premise Plumbing System Using a Sequential Sampling Approach.
    Ng DQ; Lin YP
    Int J Environ Res Public Health; 2016 Feb; 13(3):. PubMed ID: 26927154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrification in premise plumbing: role of phosphate, pH and pipe corrosion.
    Zhang Y; Griffin A; Edwards M
    Environ Sci Technol; 2008 Jun; 42(12):4280-4. PubMed ID: 18605545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of galvanic corrosion on lead release from aged lead service lines.
    Wang Y; Jing H; Mehta V; Welter GJ; Giammar DE
    Water Res; 2012 Oct; 46(16):5049-60. PubMed ID: 22835836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of flow rate and lead/copper pipe sequence on lead release from service lines.
    Cartier C; Arnold RB; Triantafyllidou S; Prévost M; Edwards M
    Water Res; 2012 Sep; 46(13):4142-52. PubMed ID: 22677500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water quality characteristics and corrosion potential in blending zones in X city drinking water distribution system.
    Zhang H; Wang K; Zhou X; Zhu W; Wang W
    Environ Monit Assess; 2018 Aug; 190(9):524. PubMed ID: 30116900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper release in low and high alkaline water.
    D'Antonio L; Fabbricino M; Nasso M; Trifuoggi M
    Environ Technol; 2008 Apr; 29(4):473-8. PubMed ID: 18619152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of treatment on Pb release from full and partially replaced harvested Lead Service Lines (LSLs).
    Cartier C; Doré E; Laroche L; Nour S; Edwards M; Prévost M
    Water Res; 2013 Feb; 47(2):661-71. PubMed ID: 23174535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of water treatment on the contribution of faucets to dissolved and particulate lead release at the tap.
    Cartier C; Nour S; Richer B; Deshommes E; Prévost M
    Water Res; 2012 Oct; 46(16):5205-16. PubMed ID: 22863027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source identification of copper, lead, nickel, and zinc loading in wastewater reclamation plant influents from corrosion of brass in plumbing fixtures.
    Kimbrough DE
    Environ Pollut; 2009 Apr; 157(4):1310-6. PubMed ID: 19118932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.
    Nguyen CK; Stone KR; Dudi A; Edwards MA
    Environ Sci Technol; 2010 Sep; 44(18):7076-81. PubMed ID: 20738129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water.
    Boulay N; Edwards M
    Water Res; 2001 Mar; 35(3):683-90. PubMed ID: 11228965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of orthophosphate on lead release from pipe scale in high pH, low alkalinity water.
    Bae Y; Pasteris JD; Giammar DE
    Water Res; 2020 Jun; 177():115764. PubMed ID: 32305699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling in schools and large institutional buildings: Implications for regulations, exposure and management of lead and copper.
    Doré E; Deshommes E; Andrews RC; Nour S; Prévost M
    Water Res; 2018 Sep; 140():110-122. PubMed ID: 29704756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of lead leaching from galvanic corrosion of lead-containing components in copper pipe drinking water supply systems.
    Chang L; Lee JHW; Fung YS
    J Hazard Mater; 2022 Aug; 436():129169. PubMed ID: 35739706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of fluoridation and disinfection agent combinations on lead leaching from leaded-brass parts.
    Maas RP; Patch SC; Christian AM; Coplan MJ
    Neurotoxicology; 2007 Sep; 28(5):1023-31. PubMed ID: 17697714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead contamination of potable water due to nitrification.
    Zhang Y; Griffin A; Rahman M; Camper A; Baribeau H; Edwards M
    Environ Sci Technol; 2009 Mar; 43(6):1890-5. PubMed ID: 19368188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of lead release potential of new premise plumbing materials.
    Lei IL; Ng DQ; Sable SS; Lin YP
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27971-27981. PubMed ID: 30066071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lead in drinking water, determination of its concentration and effects of new recommendations of the World Health Organization (WHO) on public and private networks management].
    Vilagines R; Leroy P
    Bull Acad Natl Med; 1995 Oct; 179(7):1393-408. PubMed ID: 8556413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.