These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19847777)

  • 1. A novel and efficient tool for locating and characterizing protein cavities and binding sites.
    Tripathi A; Kellogg GE
    Proteins; 2010 Mar; 78(4):825-42. PubMed ID: 19847777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids.
    Levitt DG; Banaszak LJ
    J Mol Graph; 1992 Dec; 10(4):229-34. PubMed ID: 1476996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining geometric pocket detection and desolvation properties to detect putative ligand binding sites on proteins.
    Schneider S; Zacharias M
    J Struct Biol; 2012 Dec; 180(3):546-50. PubMed ID: 23023089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dxTuber: detecting protein cavities, tunnels and clefts based on protein and solvent dynamics.
    Raunest M; Kandt C
    J Mol Graph Model; 2011 Jun; 29(7):895-905. PubMed ID: 21420887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration in drug design. 2. Influence of local site surface shape on water binding.
    Poornima CS; Dean PM
    J Comput Aided Mol Des; 1995 Dec; 9(6):513-20. PubMed ID: 8789193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.
    Kupas K; Ultsch A; Klebe G
    Proteins; 2008 May; 71(3):1288-306. PubMed ID: 18041748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate detection of protein:ligand binding sites using molecular dynamics simulations.
    Bhinge A; Chakrabarti P; Uthanumallian K; Bajaj K; Chakraborty K; Varadarajan R
    Structure; 2004 Nov; 12(11):1989-99. PubMed ID: 15530363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavities and atomic packing in protein structures and interfaces.
    Sonavane S; Chakrabarti P
    PLoS Comput Biol; 2008 Sep; 4(9):e1000188. PubMed ID: 19005575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Binding Pocket Dynamics.
    Stank A; Kokh DB; Fuller JC; Wade RC
    Acc Chem Res; 2016 May; 49(5):809-15. PubMed ID: 27110726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CASTp 3.0: computed atlas of surface topography of proteins.
    Tian W; Chen C; Lei X; Zhao J; Liang J
    Nucleic Acids Res; 2018 Jul; 46(W1):W363-W367. PubMed ID: 29860391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU-based detection of protein cavities using Gaussian surfaces.
    Dias SED; Martins AM; Nguyen QT; Gomes AJP
    BMC Bioinformatics; 2017 Nov; 18(1):493. PubMed ID: 29145826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time ligand binding pocket database search using local surface descriptors.
    Chikhi R; Sael L; Kihara D
    Proteins; 2010 Jul; 78(9):2007-28. PubMed ID: 20455259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites.
    Nayal M; Honig B
    Proteins; 2006 Jun; 63(4):892-906. PubMed ID: 16477622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML; Breyer WA; Griswold IJ; Matthews BW
    J Mol Biol; 2000 Sep; 302(4):955-77. PubMed ID: 10993735
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Monet D; Desdouits N; Nilges M; Blondel A
    J Chem Inf Model; 2019 Aug; 59(8):3506-3518. PubMed ID: 31287306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria.
    Peters KP; Fauck J; Frömmel C
    J Mol Biol; 1996 Feb; 256(1):201-13. PubMed ID: 8609611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAVER: a new tool to explore routes from protein clefts, pockets and cavities.
    Petrek M; Otyepka M; Banás P; Kosinová P; Koca J; Damborský J
    BMC Bioinformatics; 2006 Jun; 7():316. PubMed ID: 16792811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets.
    Zhu H; Pisabarro MT
    Bioinformatics; 2011 Feb; 27(3):351-8. PubMed ID: 21134896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.