BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19847801)

  • 1. In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast.
    Bégin S; Bélanger E; Laffray S; Vallée R; Côté D
    J Biophotonics; 2009 Nov; 2(11):632-42. PubMed ID: 19847801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent transfer function of Fourier transform spectral interferometric coherent anti-Stokes Raman scattering microscopy.
    Fukutake N
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1689-94. PubMed ID: 21811331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical diagnostic technology based on light scattering spectroscopy for early cancer detection.
    Perelman LT
    Expert Rev Med Devices; 2006 Nov; 3(6):787-803. PubMed ID: 17280544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams.
    Bélanger E; Bégin S; Laffray S; De Koninck Y; Vallée R; Côté D
    Opt Express; 2009 Oct; 17(21):18419-32. PubMed ID: 20372572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues.
    Huang Z; Lui H; McLean DI; Korbelik M; Zeng H
    Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging.
    Qian J; Jiang L; Cai F; Wang D; He S
    Biomaterials; 2011 Feb; 32(6):1601-10. PubMed ID: 21106233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for achieving super-resolved widefield CARS microscopy.
    Hajek KM; Littleton B; Turk D; McIntyre TJ; Rubinsztein-Dunlop H
    Opt Express; 2010 Aug; 18(18):19263-72. PubMed ID: 20940822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical imaging: skin cancer imaging.
    Mullani NA; O'Neil RG
    J Nucl Med; 2008 Jun; 49(6):1031. PubMed ID: 18483089
    [No Abstract]   [Full Text] [Related]  

  • 9. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales.
    Opilik L; Schmid T; Zenobi R
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():379-98. PubMed ID: 23772660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal spectral imaging in tissue with contrast provided by Raman vibrational signatures.
    Whitley A; Adar F
    Cytometry A; 2006 Aug; 69(8):880-7. PubMed ID: 16969801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy for diagnosis of atherosclerosis: a rapid analysis using neural networks.
    de Paula AR; Sathaiah S
    Med Eng Phys; 2005 Apr; 27(3):237-44. PubMed ID: 15694607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourth-order coherent Raman spectroscopy in a time domain: applications to buried interfaces.
    Nomoto T; Onishi H
    Phys Chem Chem Phys; 2007 Nov; 9(41):5515-21. PubMed ID: 17957307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue.
    Huff TB; Cheng JX
    J Microsc; 2007 Feb; 225(Pt 2):175-82. PubMed ID: 17359252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreducible representation and projection operator application to understanding nonlinear optical phenomena: hyper-Raman, sum frequency generation, and four-wave mixing spectroscopy.
    Lee SH; Wang J; Krimm S; Chen Z
    J Phys Chem A; 2006 Jun; 110(22):7035-44. PubMed ID: 16737251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated real-time Raman system for clinical in vivo skin analysis.
    Zhao J; Lui H; McLean DI; Zeng H
    Skin Res Technol; 2008 Nov; 14(4):484-92. PubMed ID: 18937786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free molecular imaging of living cells.
    Fujita K; Smith NI
    Mol Cells; 2008 Dec; 26(6):530-5. PubMed ID: 19306507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles.
    Kneipp J; Kneipp H; Rice WL; Kneipp K
    Anal Chem; 2005 Apr; 77(8):2381-5. PubMed ID: 15828770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically amplified detection for biomedical sensing and imaging.
    Mahjoubfar A; Goda K; Betts G; Jalali B
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):2124-32. PubMed ID: 24322867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues.
    Huang Z; McWilliams A; Lam S; English J; McLean DI; Lui H; Zeng H
    Int J Oncol; 2003 Sep; 23(3):649-55. PubMed ID: 12888900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.