These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19848119)

  • 1. Chemodynamics of aquatic metal complexes: from small ligands to colloids.
    Van Leeuwen HP; Buffle J
    Environ Sci Technol; 2009 Oct; 43(19):7175-83. PubMed ID: 19848119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexants.
    van Leeuwen HP; Buffle J; Town RM
    Langmuir; 2012 Jan; 28(1):227-34. PubMed ID: 22126743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemodynamics of soft nanoparticulate metal complexes in aqueous media: basic theory for spherical particles with homogeneous spatial distributions of sites and charges.
    van Leeuwen HP; Town RM; Buffle J
    Langmuir; 2011 Apr; 27(8):4514-9. PubMed ID: 21410210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids.
    Town RM; van Leeuwen HP; Buffle J
    Environ Sci Technol; 2012 Oct; 46(19):10487-98. PubMed ID: 22934531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal flux and dynamic speciation at (bio)interfaces. Part II: Evaluation and compilation of physicochemical parameters for complexes with particles and aggregates.
    Zhang Z; Buffle J; Alemani D
    Environ Sci Technol; 2007 Nov; 41(22):7621-31. PubMed ID: 18075066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemodynamics of soft charged nanoparticles in aquatic media: fundamental concepts.
    Town RM; Buffle J; Duval JF; van Leeuwen HP
    J Phys Chem A; 2013 Aug; 117(33):7643-54. PubMed ID: 23806009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal flux and dynamic speciation at (bio)interfaces. Part I: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances.
    Buffle J; Zhang Z; Startchev K
    Environ Sci Technol; 2007 Nov; 41(22):7609-20. PubMed ID: 18075065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core-shell and hard particle types.
    Duval JFL
    Phys Chem Chem Phys; 2017 May; 19(19):11802-11815. PubMed ID: 28447689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemodynamics of metal complexation by natural soft colloids: Cu(II) binding by humic acid.
    Town RM; Duval JF; Buffle J; van Leeuwen HP
    J Phys Chem A; 2012 Jun; 116(25):6489-96. PubMed ID: 22324832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects.
    Duval JF
    J Phys Chem A; 2009 Mar; 113(11):2275-93. PubMed ID: 19281140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of ligand protonation on eigen-type metal complexation kinetics in aqueous systems.
    van Leeuwen HP; Town RM; Buffle J
    J Phys Chem A; 2007 Mar; 111(11):2115-21. PubMed ID: 17388287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of ligand protonation on higher-order metal complexation kinetics in aqueous systems.
    Town RM; Leeuwen HP
    J Phys Chem A; 2008 Mar; 112(12):2563-71. PubMed ID: 18311952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal speciation dynamics in monodisperse soft colloidal ligand suspensions.
    Duval JF; Pinheiro JP; van Leeuwen HP
    J Phys Chem A; 2008 Aug; 112(31):7137-51. PubMed ID: 18636700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigorous Physicochemical Framework for Metal Ion Binding by Aqueous Nanoparticulate Humic Substances: Implications for Speciation Modeling by the NICA-Donnan and WHAM Codes.
    Town RM; van Leeuwen HP; Duval JFL
    Environ Sci Technol; 2019 Aug; 53(15):8516-8532. PubMed ID: 31291104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outer-sphere and inner-sphere ligand protonation in metal complexation kinetics: the lability of EDTA complexes.
    van Leeuwen HP; Town RM
    Environ Sci Technol; 2009 Jan; 43(1):88-93. PubMed ID: 19209589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.
    Duval JF; Qian S
    J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial metal flux in ligand mixtures. 3. Unexpected flux enhancement due to kinetic interplay at the consuming surface, computed for aquatic systems.
    Zhang Z; Buffle J
    Environ Sci Technol; 2009 Aug; 43(15):5762-8. PubMed ID: 19731674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal speciation in a complexing soft film layer: a theoretical dielectric relaxation study of coupled chemodynamic and electrodynamic interfacial processes.
    Merlin J; Duval JF
    Phys Chem Chem Phys; 2012 Apr; 14(13):4491-504. PubMed ID: 22370713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft ligands--biodegradable complexants in plant cultivation and environmental protection.
    Tokés B; Száva J; Duşa S; Vintilă A; Donáth-Nagy G; Gál G
    Pharmazie; 2006 Feb; 61(2):166-70. PubMed ID: 16526567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative appraisal of the ambivalent metal ion binding properties of cytidine in aqueous solution and an estimation of the anti-syn energy barrier of cytidine derivatives.
    Knobloch B; Sigel H
    J Biol Inorg Chem; 2004 Apr; 9(3):365-73. PubMed ID: 15034770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.