These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19848156)

  • 21. ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces.
    Cagnasso M; Boero V; Franchini MA; Chorover J
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):456-67. PubMed ID: 20074916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from water samples.
    Karanis P; Kimura A
    Lett Appl Microbiol; 2002; 34(6):444-9. PubMed ID: 12028427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2004 Dec; 38(24):6839-45. PubMed ID: 15669347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles.
    Ha J; Hyun Yoon T; Wang Y; Musgrave CB; Brown GE
    Langmuir; 2008 Jun; 24(13):6683-92. PubMed ID: 18522441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATR-FTIR spectroscopy study of the influence of pH and contact time on the adhesion of Shewanella putrefaciens bacterial cells to the surface of hematite.
    Elzinga EJ; Huang JH; Chorover J; Kretzschmar R
    Environ Sci Technol; 2012 Dec; 46(23):12848-55. PubMed ID: 23136883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of viability and infectivity of Cryptosporidium parvum oocysts stored in potassium dichromate solution and chlorinated tap water.
    Chen F; Huang K; Qin S; Zhao Y; Pan C
    Vet Parasitol; 2007 Nov; 150(1-2):13-7. PubMed ID: 17954011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts.
    Fontaine M; Guillot E
    FEMS Microbiol Lett; 2003 Sep; 226(2):237-43. PubMed ID: 14553917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface.
    Trivedi P; Vasudevan D
    Environ Sci Technol; 2007 May; 41(9):3153-8. PubMed ID: 17539519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(6):1837-42. PubMed ID: 16570605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of Cryptosporidium parvum oocysts in water using ultrasonic treatment.
    Olvera M; Eguía A; Rodríguez O; Chong E; Pillai SD; Ilangovan K
    Bioresour Technol; 2008 Apr; 99(6):2046-9. PubMed ID: 17498946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of bovine manure on Cryptosporidium parvum oocyst attachment to soil.
    Kuczynska E; Shelton DR; Pachepsky Y
    Appl Environ Microbiol; 2005 Oct; 71(10):6394-7. PubMed ID: 16204565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between Cryptosporidium oocysts and water treatment coagulants.
    Bustamante HA; Shanker SR; Pashley RM; Karaman ME
    Water Res; 2001 Sep; 35(13):3179-89. PubMed ID: 11487115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration.
    Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M
    Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of pretreatment and experimental conditions on electrophoretic mobility and hydrophobicity of Cryptosporidium parvum oocysts.
    Brush CF; Walter MF; Anguish LJ; Ghiorse WC
    Appl Environ Microbiol; 1998 Nov; 64(11):4439-45. PubMed ID: 9797304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of glyphosate on goethite: molecular characterization of surface complexes.
    Sheals J; Sjöberg S; Persson P
    Environ Sci Technol; 2002 Jul; 36(14):3090-5. PubMed ID: 12141488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays.
    Lee Y; Gomez LL; McAuliffe IT; Tsang VC
    Lett Appl Microbiol; 2004; 39(2):156-62. PubMed ID: 15242454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical properties and relaxation times of the hematite/water interface.
    Shimizu K; Boily JF
    Langmuir; 2014 Aug; 30(31):9591-8. PubMed ID: 25072470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.
    Brechbühl Y; Christl I; Elzinga EJ; Kretzschmar R
    J Colloid Interface Sci; 2012 Jul; 377(1):313-21. PubMed ID: 22494686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.