These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19848162)

  • 1. Modeling the effect of surface heterogeneity in equilibrium of heavy metal ion biosorption by using the ion exchange model.
    Plazinski W; Rudzinski W
    Environ Sci Technol; 2009 Oct; 43(19):7465-71. PubMed ID: 19848162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding stoichiometry in sorption of divalent metal ions: a theoretical analysis based on the ion-exchange model.
    Plazinski W; Rudzinski W
    J Colloid Interface Sci; 2010 Apr; 344(1):165-70. PubMed ID: 20116798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of heavy metals by algal biosorbents. Theoretical models of kinetics, equilibria and thermodynamics.
    Plazinski W
    Adv Colloid Interface Sci; 2013 Sep; 197-198():58-67. PubMed ID: 23688631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process.
    Chojnacka K; Chojnacki A; Górecka H
    Chemosphere; 2005 Mar; 59(1):75-84. PubMed ID: 15698647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effect of pH on kinetics of heavy metal ion biosorption. A theoretical approach based on the statistical rate theory.
    Plazinski W; Rudzinski W
    Langmuir; 2009 Jan; 25(1):298-304. PubMed ID: 19063624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals.
    Zhou Y; Zhang Z; Zhang J; Xia S
    J Environ Sci (China); 2016 Jul; 45():248-56. PubMed ID: 27372140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies.
    Febrianto J; Kosasih AN; Sunarso J; Ju YH; Indraswati N; Ismadji S
    J Hazard Mater; 2009 Mar; 162(2-3):616-45. PubMed ID: 18656309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal adsorption onto agro-based waste materials: a review.
    Demirbas A
    J Hazard Mater; 2008 Sep; 157(2-3):220-9. PubMed ID: 18291580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effect of pH on biosorption of heavy metals by citrus peels.
    Schiewer S; Patil SB
    J Hazard Mater; 2008 Aug; 157(1):8-17. PubMed ID: 18242837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study.
    Abdolali A; Ngo HH; Guo W; Lu S; Chen SS; Nguyen NC; Zhang X; Wang J; Wu Y
    Sci Total Environ; 2016 Jan; 542(Pt A):603-11. PubMed ID: 26544889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids.
    Lü QF; Huang ZK; Liu B; Cheng X
    Bioresour Technol; 2012 Jan; 104():111-8. PubMed ID: 22100241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.
    Vilar VJ; Botelho CM; Boaventura RA
    J Hazard Mater; 2008 Jun; 154(1-3):711-20. PubMed ID: 18055109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals binding to biosorbents. Insights into Non-competitive models from a simple pH-dependent model.
    Plazinski W; Rudzinski W
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):133-7. PubMed ID: 20580211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of heavy metal removal using microorganisms as biosorbent.
    Javanbakht V; Alavi SA; Zilouei H
    Water Sci Technol; 2014; 69(9):1775-87. PubMed ID: 24804650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of heavy metals from aqueous solutions with tobacco dust.
    Qi BC; Aldrich C
    Bioresour Technol; 2008 Sep; 99(13):5595-601. PubMed ID: 18096382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal uptake by lignin: comparison of biotic ligand models with an ion-exchange process.
    Crist RH; Martin JR; Crist DR
    Environ Sci Technol; 2002 Apr; 36(7):1485-90. PubMed ID: 11999055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.
    Jovanovic M; Rajic N; Obradovic B
    J Hazard Mater; 2012 Sep; 233-234():57-64. PubMed ID: 22818175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.