These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 19848170)
1. Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment. Luo W; Kelly SD; Kemner KM; Watson D; Zhou J; Jardine PM; Gu B Environ Sci Technol; 2009 Oct; 43(19):7516-22. PubMed ID: 19848170 [TBL] [Abstract][Full Text] [Related]
2. Prediction of aluminum, uranium, and co-contaminants precipitation and adsorption during titration of acidic sediments. Tang G; Luo W; Watson DB; Brooks SC; Gu B Environ Sci Technol; 2013 Jun; 47(11):5787-93. PubMed ID: 23641798 [TBL] [Abstract][Full Text] [Related]
3. Dissolution of uranium-bearing minerals and mobilization of uranium by organic ligands in a biologically reduced sediment. Luo W; Gu B Environ Sci Technol; 2011 Apr; 45(7):2994-9. PubMed ID: 21395303 [TBL] [Abstract][Full Text] [Related]
4. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments. Szecsody JE; Truex MJ; Qafoku NP; Wellman DM; Resch T; Zhong L J Contam Hydrol; 2013 Aug; 151():155-75. PubMed ID: 23851265 [TBL] [Abstract][Full Text] [Related]
5. Treatment of nitric acid-, U(VI)-, and Tc(VII)-contaminated groundwater in intermediate-scale physical models of an in situ biobarrier. Michalsen MM; Peacock AD; Smithgal AN; White DC; Spain AM; Sanchez-Rosario Y; Krumholz LR; Kelly SD; Kemner KM; McKinley J; Heald SM; Bogle MA; Watson DB; Istok JD Environ Sci Technol; 2009 Mar; 43(6):1952-61. PubMed ID: 19368198 [TBL] [Abstract][Full Text] [Related]
6. Modeling uranium transport in acidic contaminated groundwater with base addition. Zhang F; Luo W; Parker JC; Brooks SC; Watson DB; Jardine PM; Gu B J Hazard Mater; 2011 Jun; 190(1-3):863-8. PubMed ID: 21531075 [TBL] [Abstract][Full Text] [Related]
7. Potential for U sequestration with select minerals and sediments via base treatment. Emerson HP; Di Pietro S; Katsenovich Y; Szecsody J J Environ Manage; 2018 Oct; 223():108-114. PubMed ID: 29908396 [TBL] [Abstract][Full Text] [Related]
8. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation. Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142 [TBL] [Abstract][Full Text] [Related]
9. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling. Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874 [TBL] [Abstract][Full Text] [Related]
10. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms. Alam MS; Cheng T J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631 [TBL] [Abstract][Full Text] [Related]
11. Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater. Zhang F; Parker JC; Brooks SC; Watson DB; Jardine PM; Gu B J Hazard Mater; 2010 Jun; 178(1-3):42-8. PubMed ID: 20116923 [TBL] [Abstract][Full Text] [Related]
12. Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite. Brookshaw DR; Pattrick RA; Bots P; Law GT; Lloyd JR; Mosselmans JF; Vaughan DJ; Dardenne K; Morris K Environ Sci Technol; 2015 Nov; 49(22):13139-48. PubMed ID: 26488884 [TBL] [Abstract][Full Text] [Related]
13. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments. Wang G; Um W; Wang Z; Reinoso-Maset E; Washton NM; Mueller KT; Perdrial N; O'Day PA; Chorover J Environ Sci Technol; 2017 Oct; 51(19):11011-11019. PubMed ID: 28884577 [TBL] [Abstract][Full Text] [Related]
14. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus. Crawford SE; Liber K Sci Total Environ; 2015 Nov; 532():821-30. PubMed ID: 26205073 [TBL] [Abstract][Full Text] [Related]
15. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. Wu WM; Carley J; Gentry T; Ginder-Vogel MA; Fienen M; Mehlhorn T; Yan H; Caroll S; Pace MN; Nyman J; Luo J; Gentile ME; Fields MW; Hickey RF; Gu B; Watson D; Cirpka OA; Zhou J; Fendorf S; Kitanidis PK; Jardine PM; Criddle CS Environ Sci Technol; 2006 Jun; 40(12):3986-95. PubMed ID: 16830572 [TBL] [Abstract][Full Text] [Related]
16. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation. Tokunaga TK; Kim Y; Wan J Environ Sci Technol; 2009 Jul; 43(14):5467-71. PubMed ID: 19708383 [TBL] [Abstract][Full Text] [Related]
17. Effect of saline waste solution infiltration rates on uranium retention and spatial distribution in Hanford sediments. Wan J; Tokunaga TK; Kim Y; Wang Z; Lanzirotti A; Saiz E; Serne RJ Environ Sci Technol; 2008 Mar; 42(6):1973-8. PubMed ID: 18409623 [TBL] [Abstract][Full Text] [Related]
18. Method to attenuate U(VI) mobility in acidic waste plumes using humic acids. Wan J; Dong W; Tokunaga TK Environ Sci Technol; 2011 Mar; 45(6):2331-7. PubMed ID: 21319737 [TBL] [Abstract][Full Text] [Related]
19. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site. Dangelmayr MA; Reimus PW; Johnson RH; Clay JT; Stone JJ J Contam Hydrol; 2018 Jun; 213():28-39. PubMed ID: 29691066 [TBL] [Abstract][Full Text] [Related]
20. The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments. Crawford SE; Lofts S; Liber K Environ Pollut; 2017 Jan; 220(Pt B):873-881. PubMed ID: 27825841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]