These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19848172)

  • 1. Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy.
    Pallem VL; Stretz HA; Wells MJ
    Environ Sci Technol; 2009 Oct; 43(19):7531-5. PubMed ID: 19848172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.
    Dong H; Lo IM
    Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Cd(II) on the stability of humic acid-coated nano-TiO
    Wang L; Lu Y; Yang C; Chen C; Huang W; Dang Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23144-23152. PubMed ID: 28828557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles.
    Nason JA; McDowell SA; Callahan TW
    J Environ Monit; 2012 Jul; 14(7):1885-92. PubMed ID: 22495395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.
    Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G
    J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part II: evaluation of structural changes following ozonation.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2014 Apr; 476-477():731-42. PubMed ID: 24364994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO
    Wang D; Wang P; Wang C; Ao Y
    Environ Pollut; 2019 May; 248():834-844. PubMed ID: 30856499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment?
    Park S; Woodhall J; Ma G; Veinot JG; Cresser MS; Boxall AB
    Nanotoxicology; 2014 Aug; 8(5):583-92. PubMed ID: 23789836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of the physicochemical properties of natural organic matter samples from different sources to their effects on gold nanoparticle aggregation in monovalent electrolyte.
    Louie SM; Spielman-Sun ER; Small MJ; Tilton RD; Lowry GV
    Environ Sci Technol; 2015 Feb; 49(4):2188-98. PubMed ID: 25611369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of interaction between tricyclic structures containing pharmaceuticals, their models and humic substances.
    Klavins M; Ansone L; Purmalis O; Zicmanis A
    Water Sci Technol; 2011; 63(5):845-52. PubMed ID: 21411932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into interaction of humic acid with silver nanoparticles.
    Manoharan V; Ravindran A; Anjali CH
    Cell Biochem Biophys; 2014 Jan; 68(1):127-31. PubMed ID: 23801156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the effects of humic and fulvic acids on quantum dot nanoparticles using capillary electrophoresis with laser-induced fluorescence detection.
    Celiz MD; Colón LA; Watson DF; Aga DS
    Environ Sci Technol; 2011 Apr; 45(7):2917-24. PubMed ID: 21381674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water.
    Akhil K; Chandran P; Sudheer Khan S
    J Photochem Photobiol B; 2015 Dec; 153():289-95. PubMed ID: 26496792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of soil-aged silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Klitzke S; Lang F; Vogel HJ
    J Contam Hydrol; 2016 Dec; 195():31-39. PubMed ID: 27871667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?
    Park S; Woodhall J; Ma G; Veinot JG; Boxall AB
    Environ Toxicol Chem; 2015 Apr; 34(4):850-9. PubMed ID: 25556899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC.
    Lee BM; Seo YS; Hur J
    Water Res; 2015 Apr; 73():242-51. PubMed ID: 25682051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: structural characterization of humic substances.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2014 Apr; 476-477():718-30. PubMed ID: 24364992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.