BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 1984854)

  • 1. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR; Goldsmith HL
    Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes.
    Murata T; Secomb TW
    Biorheology; 1989; 26(2):247-59. PubMed ID: 2605331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for motion and sedimentation of cylindrical red-cell aggregates during slow blood flow in narrow horizontal tubes.
    Secomb TW; el-Kareh AW
    J Biomech Eng; 1994 Aug; 116(3):243-9. PubMed ID: 7799623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Margination of leukocytes in blood flow through small tubes.
    Goldsmith HL; Spain S
    Microvasc Res; 1984 Mar; 27(2):204-22. PubMed ID: 6708830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes.
    Alonso C; Pries AR; Gaehtgens P
    Biorheology; 1989; 26(2):229-46. PubMed ID: 2605330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tube flow of human blood at near zero shear.
    Gaehtgens P
    Biorheology; 1987; 24(4):367-76. PubMed ID: 3663895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-dependent rheological properties of blood in capillaries.
    Secomb TW
    Microvasc Res; 1987 Jul; 34(1):46-58. PubMed ID: 3657604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semi-empirical model for flow or blood and other particulate suspensions through narrow tubes.
    Das RN; Seshadri V
    Bull Math Biol; 1975 Oct; 37(5):459-70. PubMed ID: 1201370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T; Jaffrin MY; Seshadri V; Mc Kay C
    Biorheology; 1982; 19(1/2):253-67. PubMed ID: 6807368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical model of blood flow through hollow fibres considering hematocrit-dependent, non-Newtonian blood properties.
    Lerche D; Oelke R
    Int J Artif Organs; 1990 Nov; 13(11):742-6. PubMed ID: 2089012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation of red blood cell flow in small tubes by white blood cells.
    Thompson TN; La Celle PL; Cokelet GR
    Pflugers Arch; 1989 Feb; 413(4):372-7. PubMed ID: 2928089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to blood flow in microvessels in vivo.
    Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P
    Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonuniform red cell distribution in 20 to 100 micrometers bifurcations.
    Fenton BM; Carr RT; Cokelet GR
    Microvasc Res; 1985 Jan; 29(1):103-26. PubMed ID: 2580216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate.
    Tilles AW; Eckstein EC
    Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient lateral transport of platelet-sized particles in flowing blood suspensions.
    Yeh C; Eckstein EC
    Biophys J; 1994 May; 66(5):1706-16. PubMed ID: 8061219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.