These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1984858)

  • 1. Action potential propagation in a thick strand of cardiac muscle.
    Roth BJ
    Circ Res; 1991 Jan; 68(1):162-73. PubMed ID: 1984858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electrical potential produced by a strand of cardiac muscle: a bidomain analysis.
    Roth BJ
    Ann Biomed Eng; 1988; 16(6):609-37. PubMed ID: 3228221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model.
    Henriquez CS; Muzikant AL; Smoak CK
    J Cardiovasc Electrophysiol; 1996 May; 7(5):424-44. PubMed ID: 8722588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active modulation of electrical coupling between cardiac cells of the dog. A mechanism for transient and steady state variations in conduction velocity.
    Spach MS; Kootsey JM; Sloan JD
    Circ Res; 1982 Sep; 51(3):347-62. PubMed ID: 7116583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of barriers on propagation of action potentials in two-dimensional cardiac tissue. A computer simulation study.
    Maglaveras N; Offner F; van Capelle FJ; Allessie MA; Sahakian AV
    J Electrocardiol; 1995 Jan; 28(1):17-31. PubMed ID: 7897334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purkinje and ventricular activation sequences of canine papillary muscle. Effects of quinidine and calcium on the Purkinje-ventricular conduction delay.
    Veenstra RD; Joyner RW; Rawling DA
    Circ Res; 1984 May; 54(5):500-15. PubMed ID: 6722999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.
    Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J
    Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor.
    Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA
    Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.
    Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC
    Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and computational studies of strain-conduction velocity relationships in cardiac tissue.
    McNary TG; Sohn K; Taccardi B; Sachse FB
    Prog Biophys Mol Biol; 2008; 97(2-3):383-400. PubMed ID: 18406453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of slow conduction in bullfrog atrial trabeculae.
    Murphey CR; Clark JW; Giles WR
    Math Biosci; 1991 Sep; 106(1):85-109. PubMed ID: 1802176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation versus delayed activation during field stimulation of cardiac muscle.
    Krassowska W; Cabo C; Knisley SB; Ideker RE
    Pacing Clin Electrophysiol; 1992 Feb; 15(2):197-210. PubMed ID: 1372419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.
    Rudy Y; Quan WL
    Circ Res; 1987 Dec; 61(6):815-23. PubMed ID: 3677338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of halothane on impulse propagation in Purkinje fibers and at Purkinje-muscle junctions: relationship of Vmax to conduction velocity.
    Freeman LC; Muir WW
    Anesth Analg; 1991 Jan; 72(1):5-10. PubMed ID: 1984376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage dependence and time dependence of contraction in sheep cardiac Purkinje fibers.
    Gibbons WR; Fozzard HA
    Circ Res; 1971 Apr; 28(4):446-60. PubMed ID: 5551893
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation.
    Spach MS; Dolber PC; Heidlage JF
    Circ Res; 1988 Apr; 62(4):811-32. PubMed ID: 2450697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between ventricular cells during the early part of excitation in the ferret heart.
    Suenson M
    Acta Physiol Scand; 1985 Sep; 125(1):81-90. PubMed ID: 4050489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overdrive suppression of conduction at the canine Purkinje-muscle junction.
    Gilmour RF; Davis JR; Zipes DP
    Circulation; 1987 Dec; 76(6):1388-96. PubMed ID: 3677361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate of rise of Purkinje and transitional cells action potential and the propagation across the Purkinje-myocardium junction.
    Alanís J; Benítez D
    Jpn J Physiol; 1970 Apr; 20(2):217-32. PubMed ID: 4318209
    [No Abstract]   [Full Text] [Related]  

  • 20. Electrical constants of arterially perfused rabbit papillary muscle.
    Kléber AG; Riegger CB
    J Physiol; 1987 Apr; 385():307-24. PubMed ID: 3656162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.