BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19848612)

  • 1. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. 1993.
    Jordan A; Wust P; Fähling H; John W; Hinz A; Felix R
    Int J Hyperthermia; 2009 Nov; 25(7):499-511. PubMed ID: 19848612
    [No Abstract]   [Full Text] [Related]  

  • 2. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia.
    Jordan A; Wust P; Fähling H; John W; Hinz A; Felix R
    Int J Hyperthermia; 1993; 9(1):51-68. PubMed ID: 8433026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperthermia classic commentary: 'Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia' by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51-68.
    Jordan A
    Int J Hyperthermia; 2009 Nov; 25(7):512-6. PubMed ID: 19848613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy.
    Pearce JA; Cook JR; Emelianov SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2751-4. PubMed ID: 21096213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.
    Sakellari D; Brintakis K; Kostopoulou A; Myrovali E; Simeonidis K; Lappas A; Angelakeris M
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():187-93. PubMed ID: 26478302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic microspheres and tissue model studies for therapeutic applications.
    Ramachandran N; Mazuruk K
    Ann N Y Acad Sci; 2004 Nov; 1027():99-109. PubMed ID: 15644349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of ferromagnetic materials for low-frequency hysteresis heating of tumours.
    Jones SK; Gray BN; Burton MA; Codde JP; Street R
    Phys Med Biol; 1992 Jan; 37(1):293-9. PubMed ID: 1741431
    [No Abstract]   [Full Text] [Related]  

  • 8. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles.
    Lacroix LM; Carrey J; Respaud M
    Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Quixotic journey with a fairy tale ending? A brief history of hyperthermia.
    Huilgol NG
    J Cancer Res Ther; 2014; 10(2):225-6. PubMed ID: 25022368
    [No Abstract]   [Full Text] [Related]  

  • 12. [Development of methods of local hyperthermia to achieve more marked tumor pathomorphism].
    Kharchenko VP; Galil-Ogly GA; Gudov VF; Parkhomenko AA
    Arkh Patol; 1996; 58(1):70-4. PubMed ID: 8929148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperthermia as a treatment for neoplasia.
    Dreznik A; Falk RE; Howard V; Makowka L; Venturi D
    Can J Surg; 1982 Nov; 25(6):603-8. PubMed ID: 6754046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperthermia as an anticancer modality--a historical perspective.
    Meyer JL
    Front Radiat Ther Oncol; 1984; 18():1-22. PubMed ID: 6368320
    [No Abstract]   [Full Text] [Related]  

  • 16. [The current status of and outlook for the use of suspensions of magnetic particles in oncology].
    Mavrichev AS; Fertman VE
    Vopr Onkol; 1991; 37(1):11-7. PubMed ID: 2014675
    [No Abstract]   [Full Text] [Related]  

  • 17. Potential treatment of cancer by electromagnetic heating.
    GILCHRIST RK
    Surg Gynecol Obstet; 1960 Apr; 110():499-500. PubMed ID: 13850037
    [No Abstract]   [Full Text] [Related]  

  • 18. In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field.
    Kawashita M; Domi S; Saito Y; Aoki M; Ebisawa Y; Kokubo T; Saito T; Takano M; Araki N; Hiraoka M
    J Mater Sci Mater Med; 2008 May; 19(5):1897-903. PubMed ID: 17914614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of measurement and control technologies for hyperthermia treatments of tumors with AC magnetic field].
    Guo ZH; Tang LX; Tang JT; Xie B; Deng XH
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jan; 30(1):39-42. PubMed ID: 16646424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.
    Dutz S; Hergt R
    Int J Hyperthermia; 2013 Dec; 29(8):790-800. PubMed ID: 23968194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.