BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19848617)

  • 1. Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia.
    van Wieringen N; Wiersma J; Zum Vörde Sive Vörding P; Oldenborg S; Gelvich EA; Mazokhin VN; van Dijk JD; Crezee J
    Int J Hyperthermia; 2009 Nov; 25(7):542-53. PubMed ID: 19848617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAR characteristics of three types of Contact Flexible Microstrip Applicators for superficial hyperthermia.
    Lamaitre G; Van Dijk JD; Gelvich EA; Wiersma J; Schneider CJ
    Int J Hyperthermia; 1996; 12(2):255-69. PubMed ID: 8926393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.
    Underwood HR; Peterson AF; Magin RL
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three new applicators for hyperthermia.
    Gabriele P; Orecchia R; Tseroni V; Melano A; Fillini C; Ragona R; Bolla L; Ogno G
    Arch Geschwulstforsch; 1989; 59(4):271-5. PubMed ID: 2802935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth.
    Kuroda S; Uchida N; Sugimura K; Kato H
    Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating.
    Franconi C; Raganella L; Tiberio CA
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heating patterns produced in humans by 433.92 MHz round field applicator and 915MHz contact applicator.
    Lehmann JF; DeLateur BJ; Stonebridge JB
    Arch Phys Med Rehabil; 1975 Oct; 56(10):442-8. PubMed ID: 1190998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method.
    Shaw JA; Durney CH; Christensen DA
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz.
    Chou CK; McDougall JA; Chan KW; Luk KH
    Int J Radiat Oncol Biol Phys; 1990 Oct; 19(4):1067-70. PubMed ID: 2211244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y; Nakajo M; Takeshita T; Churei H
    Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endohyperthermia--experimental evaluation of a new therapeutic approach for treatment of biliary carcinoma.
    Weigert N; Eckel F; Born P; Erhardt W; Henke J; Werner M; Classen M; Rösch T
    Endoscopy; 2000 Apr; 32(4):306-10. PubMed ID: 10774970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal power deposition with finite-sized, planar hyperthermia applicator arrays.
    Tharp HS; Roemer RB
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):569-79. PubMed ID: 1601438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new capacitive heating applicator for the simultaneous radiohyperthermotherapy of superficial and shallow-seated tumors.
    Tanaka A; Kuroda M; Inamura K; Kawasaki S; Hiraki Y
    Acta Med Okayama; 1994 Aug; 48(4):211-6. PubMed ID: 7817776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 433 MHz Lucite cone waveguide applicator for superficial hyperthermia.
    van Rhoon GC; Rietveld PJ; van der Zee J
    Int J Hyperthermia; 1998; 14(1):13-27. PubMed ID: 9483443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8).
    Song CW; Rhee JG; Lee CK; Levitt SH
    Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):365-72. PubMed ID: 3957735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of annular arrays in practice: the measurement of phase and amplitude patterns of radio-frequency deep body applicators.
    Schneider CJ; Kuijer JP; Colussi LC; Schepp CJ; Van Dijk JD
    Med Phys; 1995 Jun; 22(6):755-65. PubMed ID: 7565364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of ultrasound hyperthermia system with a phantom model].
    Ono S; Hirose T; Shiba T; Kuriya K; Watanabe K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1996 Mar; 56(4):195-200. PubMed ID: 8992456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.