These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 19850317)
1. Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Marco-Urrea E; Radjenović J; Caminal G; Petrović M; Vicent T; Barceló D Water Res; 2010 Jan; 44(2):521-32. PubMed ID: 19850317 [TBL] [Abstract][Full Text] [Related]
2. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Marco-Urrea E; Pérez-Trujillo M; Vicent T; Caminal G Chemosphere; 2009 Feb; 74(6):765-72. PubMed ID: 19062071 [TBL] [Abstract][Full Text] [Related]
3. Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor. Aranda E; Marco-Urrea E; Caminal G; Arias ME; García-Romera I; Guillén F J Hazard Mater; 2010 Sep; 181(1-3):181-6. PubMed ID: 20627409 [TBL] [Abstract][Full Text] [Related]
4. Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Cruz-Morató C; Ferrando-Climent L; Rodriguez-Mozaz S; Barceló D; Marco-Urrea E; Vicent T; Sarrà M Water Res; 2013 Sep; 47(14):5200-10. PubMed ID: 23866144 [TBL] [Abstract][Full Text] [Related]
5. Biological decolourisation of pulp mill effluent using white rot fungus Trametes versicolor. Srinivasan SV; Murthy DV; Swaminathan T J Environ Sci Eng; 2012 Jul; 54(3):365-70. PubMed ID: 24749195 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the efficiency of Trametes hirsuta for the removal of multiple pharmaceutical compounds under low concentrations relevant to the environment. Haroune L; Saibi S; Bellenger JP; Cabana H Bioresour Technol; 2014 Nov; 171():199-202. PubMed ID: 25194915 [TBL] [Abstract][Full Text] [Related]
7. Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydroxybenzotriazole. Hata T; Shintate H; Kawai S; Okamura H; Nishida T J Hazard Mater; 2010 Sep; 181(1-3):1175-8. PubMed ID: 20619797 [TBL] [Abstract][Full Text] [Related]
8. The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. Tran NH; Urase T; Kusakabe O J Hazard Mater; 2009 Nov; 171(1-3):1051-7. PubMed ID: 19615816 [TBL] [Abstract][Full Text] [Related]
9. Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Li W; Nanaboina V; Zhou Q; Korshin GV Water Res; 2012 Feb; 46(2):403-12. PubMed ID: 22118906 [TBL] [Abstract][Full Text] [Related]
10. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Gómez-Toribio V; García-Martín AB; Martínez MJ; Martínez AT; Guillén F Appl Environ Microbiol; 2009 Jun; 75(12):3944-53. PubMed ID: 19376892 [TBL] [Abstract][Full Text] [Related]
11. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Matamoros V; Caselles-Osorio A; García J; Bayona JM Sci Total Environ; 2008 May; 394(1):171-6. PubMed ID: 18280540 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors. Schmidt N; Page D; Tiehm A J Contam Hydrol; 2017 Aug; 203():62-69. PubMed ID: 28693900 [TBL] [Abstract][Full Text] [Related]
13. A microbial electro-fenton cell for removing carbamazepine in wastewater with electricity output. Wang W; Lu Y; Luo H; Liu G; Zhang R; Jin S Water Res; 2018 Aug; 139():58-65. PubMed ID: 29626730 [TBL] [Abstract][Full Text] [Related]
14. Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Marco-Urrea E; Pérez-Trujillo M; Cruz-Morató C; Caminal G; Vicent T J Hazard Mater; 2010 Apr; 176(1-3):836-42. PubMed ID: 20031320 [TBL] [Abstract][Full Text] [Related]
15. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Sirés I; Arias C; Cabot PL; Centellas F; Garrido JA; Rodríguez RM; Brillas E Chemosphere; 2007 Jan; 66(9):1660-9. PubMed ID: 16938340 [TBL] [Abstract][Full Text] [Related]
16. Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Rodríguez-Rodríguez CE; Jelić A; Pereira MA; Sousa DZ; Petrović M; Alves MM; Barceló D; Caminal G; Vicent T Environ Sci Technol; 2012 Nov; 46(21):12012-20. PubMed ID: 23030544 [TBL] [Abstract][Full Text] [Related]
17. Oxidation-coagulation of β-blockers by K2FeVIO4 in hospital wastewater: assessment of degradation products and biodegradability. Wilde ML; Mahmoud WM; Kümmerer K; Martins AF Sci Total Environ; 2013 May; 452-453():137-47. PubMed ID: 23500407 [TBL] [Abstract][Full Text] [Related]
18. Removal of pharmaceutical compounds from urban wastewater by an advanced bio-oxidation process based on fungi Trametes versicolor immobilized in a continuous RBC system. Del Álamo AC; Pariente MI; Vasiliadou I; Padrino B; Puyol D; Molina R; Martínez F Environ Sci Pollut Res Int; 2018 Dec; 25(35):34884-34892. PubMed ID: 29264858 [TBL] [Abstract][Full Text] [Related]
19. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Zhang DQ; Gersberg RM; Hua T; Zhu J; Goyal MK; Ng WJ; Tan SK Environ Pollut; 2013 Oct; 181():98-106. PubMed ID: 23845767 [TBL] [Abstract][Full Text] [Related]
20. Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Jelic A; Cruz-Morató C; Marco-Urrea E; Sarrà M; Perez S; Vicent T; Petrović M; Barcelo D Water Res; 2012 Mar; 46(4):955-64. PubMed ID: 22178304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]