BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 19850323)

  • 1. Size distribution of methylmercury associated with particulate and dissolved organic matter in freshwaters.
    Hill JR; O'Driscoll NJ; Lean DR
    Sci Total Environ; 2009 Dec; 408(2):408-14. PubMed ID: 19850323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique.
    Clarisse O; Foucher D; Hintelmann H
    Environ Pollut; 2009 Mar; 157(3):987-93. PubMed ID: 19028412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts.
    Henneberry YK; Kraus TE; Fleck JA; Krabbenhoft DP; Bachand PM; Horwath WR
    Sci Total Environ; 2011 Jan; 409(3):631-7. PubMed ID: 21075424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylmercury and dissolved organic carbon relationships in a wetland-rich watershed impacted by elevated sulfate from mining.
    Berndt ME; Bavin TK
    Environ Pollut; 2012 Feb; 161():321-7. PubMed ID: 21705118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic production of methylmercury by solar radiation.
    Siciliano SD; O'Driscoll NJ; Tordon R; Hill J; Beauchamp S; Lean DR
    Environ Sci Technol; 2005 Feb; 39(4):1071-7. PubMed ID: 15773479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of forestry activity on the structure of dissolved organic matter in lakes: implications for mercury photoreactions.
    O'Driscoll NJ; Siciliano SD; Peak D; Carignan R; Lean DR
    Sci Total Environ; 2006 Aug; 366(2-3):880-93. PubMed ID: 16257437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the effects of photoreactive dissolved organic matter on methylmercury photodemethylation rates in freshwaters.
    Klapstein SJ; Ziegler SE; Risk DA; O'Driscoll NJ
    Environ Toxicol Chem; 2017 Jun; 36(6):1493-1502. PubMed ID: 27859609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the utility of dissolved organic matter photoreactivity as a predictor of in situ methylmercury concentration.
    Klapstein SJ; Ziegler SE; Risk DA; O'Driscoll NJ
    J Environ Sci (China); 2018 Jun; 68():160-168. PubMed ID: 29908735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury.
    Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE
    Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection.
    Her N; Amy G; McKnight D; Sohn J; Yoon Y
    Water Res; 2003 Oct; 37(17):4295-303. PubMed ID: 12946913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe.
    Bravo AG; Kothawala DN; Attermeyer K; Tessier E; Bodmer P; Ledesma JLJ; Audet J; Casas-Ruiz JP; Catalán N; Cauvy-Fraunié S; Colls M; Deininger A; Evtimova VV; Fonvielle JA; Fuß T; Gilbert P; Herrero Ortega S; Liu L; Mendoza-Lera C; Monteiro J; Mor JR; Nagler M; Niedrist GH; Nydahl AC; Pastor A; Pegg J; Gutmann Roberts C; Pilotto F; Portela AP; González-Quijano CR; Romero F; Rulík M; Amouroux D
    Water Res; 2018 Nov; 144():172-182. PubMed ID: 30029076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter.
    Fleck JA; Gill G; Bergamaschi BA; Kraus TE; Downing BD; Alpers CN
    Sci Total Environ; 2014 Jun; 484():263-75. PubMed ID: 23642571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal analysis of net fluvial methylmercury loading in a dystrophic and a clear water lake.
    Mills RB; Bodek T; Paterson AM; Blais JM; Lean DR
    Sci Total Environ; 2009 Aug; 407(16):4696-702. PubMed ID: 19447474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems.
    Tsui MT; Finlay JC
    Environ Sci Technol; 2011 Jul; 45(14):5981-7. PubMed ID: 21696154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries.
    Yao X; Zhang Y; Zhu G; Qin B; Feng L; Cai L; Gao G
    Chemosphere; 2011 Jan; 82(2):145-55. PubMed ID: 21071060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters.
    Babiarz CL; Hurley JP; Hoffmann SR; Andren AW; Shafer MM; Armstrong DE
    Environ Sci Technol; 2001 Dec; 35(24):4773-82. PubMed ID: 11775152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that influence methylmercury flux rates from wetland sediments.
    Holmes J; Lean D
    Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of molecular size fraction of DOM on photodegradation of aqueous methylmercury.
    Kim MK; Won AY; Zoh KD
    Chemosphere; 2017 May; 174():739-746. PubMed ID: 28214421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.