BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19850353)

  • 1. QM/MM study of the insertion of metal ion into protoporphyrin IX by ferrochelatase.
    Wang Y; Shen Y; Ryde U
    J Inorg Biochem; 2009 Dec; 103(12):1680-6. PubMed ID: 19850353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is it possible for Fe2+ to approach protoporphyrin IX from the side of Tyr-13 in Bacillus subtilis ferrochelatase? An answer from QM/MM study.
    Wang Y; Shen Y
    J Mol Model; 2013 Feb; 19(2):963-71. PubMed ID: 23097001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid residues His183 and Glu264 in Bacillus subtilis ferrochelatase direct and facilitate the insertion of metal ion into protoporphyrin IX.
    Hansson MD; Karlberg T; Rahardja MA; Al-Karadaghi S; Hansson M
    Biochemistry; 2007 Jan; 46(1):87-94. PubMed ID: 17198378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Ferrochelatase: Insights for the Mechanism of Ferrous Iron Approaching Protoporphyrin IX by QM/MM and QTCP Free Energy Studies.
    Wu J; Wen S; Zhou Y; Chao H; Shen Y
    J Chem Inf Model; 2016 Dec; 56(12):2421-2433. PubMed ID: 27801584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrochelatase π-helix: Implications from examining the role of the conserved π-helix glutamates in porphyrin metalation and product release.
    Gillam ME; Hunter GA; Ferreira GC
    Arch Biochem Biophys; 2018 Apr; 644():37-46. PubMed ID: 29481781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of porphyrin distortions for the ferrochelatase reaction.
    Sigfridsson E; Ryde U
    J Biol Inorg Chem; 2003 Feb; 8(3):273-82. PubMed ID: 12589563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism.
    Shipovskov S; Karlberg T; Fodje M; Hansson MD; Ferreira GC; Hansson M; Reimann CT; Al-Karadaghi S
    J Mol Biol; 2005 Oct; 352(5):1081-90. PubMed ID: 16140324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis.
    Al-Karadaghi S; Hansson M; Nikonov S; Jönsson B; Hederstedt L
    Structure; 1997 Nov; 5(11):1501-10. PubMed ID: 9384565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrin interactions with wild-type and mutant mouse ferrochelatase.
    Franco R; Ma JG; Lu Y; Ferreira GC; Shelnutt JA
    Biochemistry; 2000 Mar; 39(10):2517-29. PubMed ID: 10704201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure model of ferrochelatase from Salmonella Typhi elucidating metalation mechanism.
    Yadav P; Kumar M; Bansal R; Kaur P; Ethayathulla AS
    Int J Biol Macromol; 2019 Apr; 127():585-593. PubMed ID: 30660563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate interactions with human ferrochelatase.
    Medlock A; Swartz L; Dailey TA; Dailey HA; Lanzilotta WN
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1789-93. PubMed ID: 17261801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites.
    Lecerof D; Fodje MN; Alvarez León R; Olsson U; Hansson A; Sigfridsson E; Ryde U; Hansson M; Al-Karadaghi S
    J Biol Inorg Chem; 2003 Apr; 8(4):452-8. PubMed ID: 12761666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosstalk between metal ions in Bacillus subtilis ferrochelatase.
    Hansson MD; Lindstam M; Hansson M
    J Biol Inorg Chem; 2006 Apr; 11(3):325-33. PubMed ID: 16453119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios.
    Lu Y; Sousa A; Franco R; Mangravita A; Ferreira GC; Moura I; Shelnutt JA
    Biochemistry; 2002 Jul; 41(26):8253-62. PubMed ID: 12081474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic basis of porphyrin metallation by ferrochelatase.
    Lecerof D; Fodje M; Hansson A; Hansson M; Al-Karadaghi S
    J Mol Biol; 2000 Mar; 297(1):221-32. PubMed ID: 10704318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Product release rather than chelation determines metal specificity for ferrochelatase.
    Medlock AE; Carter M; Dailey TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2009 Oct; 393(2):308-19. PubMed ID: 19703464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrochelatase catalyzes the formation of Zn-protoporphyrin of dry-cured ham via the conversion reaction from heme in meat.
    Chau TT; Ishigaki M; Kataoka T; Taketani S
    J Agric Food Chem; 2011 Nov; 59(22):12238-45. PubMed ID: 22004247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of porphyrin-induced conformational dynamics in the heme biosynthesis enzyme ferrochelatase.
    Asuru AP; An M; Busenlehner LS
    Biochemistry; 2012 Sep; 51(36):7116-27. PubMed ID: 22897320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase.
    Medlock AE; Dailey TA; Ross TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2007 Nov; 373(4):1006-16. PubMed ID: 17884090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme.
    Franco R; Bai G; Prosinecki V; Abrunhosa F; Ferreira GC; Bastos M
    Biochem J; 2005 Mar; 386(Pt 3):599-605. PubMed ID: 15496139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.