BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

634 related articles for article (PubMed ID: 19850449)

  • 1. Mitochondria, oxidative stress, and temporal lobe epilepsy.
    Waldbaum S; Patel M
    Epilepsy Res; 2010 Jan; 88(1):23-45. PubMed ID: 19850449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?
    Waldbaum S; Patel M
    J Bioenerg Biomembr; 2010 Dec; 42(6):449-55. PubMed ID: 21132357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy.
    Rowley S; Patel M
    Free Radic Biol Med; 2013 Sep; 62():121-131. PubMed ID: 23411150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.
    Pearson JN; Rowley S; Liang LP; White AM; Day BJ; Patel M
    Neurobiol Dis; 2015 Oct; 82():289-297. PubMed ID: 26184893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures.
    Simeone KA; Matthews SA; Samson KK; Simeone TA
    Exp Neurol; 2014 Jan; 251():84-90. PubMed ID: 24270080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial involvement in temporal lobe epilepsy.
    Kudin AP; Zsurka G; Elger CE; Kunz WS
    Exp Neurol; 2009 Aug; 218(2):326-32. PubMed ID: 19268667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CREB Protects against Temporal Lobe Epilepsy Associated with Cognitive Impairment by Controlling Oxidative Neuronal Damage.
    Xing J; Han D; Xu D; Li X; Sun L
    Neurodegener Dis; 2019; 19(5-6):225-237. PubMed ID: 32417838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis.
    Waldbaum S; Liang LP; Patel M
    J Neurochem; 2010 Dec; 115(5):1172-82. PubMed ID: 21219330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: implications for epileptogenesis.
    Di Maio R; Mastroberardino PG; Hu X; Montero LM; Greenamyre JT
    Neurobiol Dis; 2013 Jan; 49():87-98. PubMed ID: 22824136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.
    Akbar M; Essa MM; Daradkeh G; Abdelmegeed MA; Choi Y; Mahmood L; Song BJ
    Brain Res; 2016 Apr; 1637():34-55. PubMed ID: 26883165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dysfunction in epilepsy.
    Folbergrová J; Kunz WS
    Mitochondrion; 2012 Jan; 12(1):35-40. PubMed ID: 21530687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging roles of brain metabolism in cognitive impairment and neuropsychiatric disorders.
    Morella IM; Brambilla R; Morè L
    Neurosci Biobehav Rev; 2022 Nov; 142():104892. PubMed ID: 36181925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy.
    Rowley S; Liang LP; Fulton R; Shimizu T; Day B; Patel M
    Neurobiol Dis; 2015 Mar; 75():151-8. PubMed ID: 25600213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial matters of the brain: mitochondrial dysfunction and oxidative status in epilepsy.
    Chang SJ; Yu BC
    J Bioenerg Biomembr; 2010 Dec; 42(6):457-9. PubMed ID: 21086030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergetics and mitochondrial dysfunction in aging: recent insights for a therapeutical approach.
    Romano AD; Greco E; Vendemiale G; Serviddio G
    Curr Pharm Des; 2014; 20(18):2978-92. PubMed ID: 24079772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells.
    Pramanik KC; Boreddy SR; Srivastava SK
    PLoS One; 2011; 6(5):e20151. PubMed ID: 21647434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of large-conductance Ca(2+)-activated K(+) channels inhibits glutamate-induced oxidative stress through attenuating ER stress and mitochondrial dysfunction.
    Yan XH; Guo XY; Jiao FY; Liu X; Liu Y
    Neurochem Int; 2015 Nov; 90():28-35. PubMed ID: 26163046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol.
    Quincozes-Santos A; Bobermin LD; Tramontina AC; Wartchow KM; Tagliari B; Souza DO; Wyse AT; Gonçalves CA
    Toxicol In Vitro; 2014 Jun; 28(4):544-51. PubMed ID: 24412540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.