BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 19850449)

  • 21. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines.
    Zhao K; Luo G; Giannelli S; Szeto HH
    Biochem Pharmacol; 2005 Dec; 70(12):1796-806. PubMed ID: 16216225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis.
    Ryan K; Backos DS; Reigan P; Patel M
    J Neurosci; 2012 Aug; 32(33):11250-8. PubMed ID: 22895709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial DNA profiling via genomic analysis in mesial temporal lobe epilepsy patients with hippocampal sclerosis.
    Gurses C; Azakli H; Alptekin A; Cakiris A; Abaci N; Arikan M; Kursun O; Gokyigit A; Ustek D
    Gene; 2014 Apr; 538(2):323-7. PubMed ID: 24440288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reviving mitochondrial bioenergetics: A relevant approach in epilepsy.
    Singh S; Singh TG; Rehni AK; Sharma V; Singh M; Kaur R
    Mitochondrion; 2021 May; 58():213-226. PubMed ID: 33775871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scavenging of highly reactive gamma-ketoaldehydes attenuates cognitive dysfunction associated with epileptogenesis.
    Pearson JN; Warren E; Liang LP; Roberts LJ; Patel M
    Neurobiol Dis; 2017 Feb; 98():88-99. PubMed ID: 27932305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases.
    Millichap LE; Damiani E; Tiano L; Hargreaves IP
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
    Gvozdjáková A; Kucharská J; Kura B; Vančová O; Rausová Z; Sumbalová Z; Uličná O; Slezák J
    Can J Physiol Pharmacol; 2020 Jan; 98(1):29-34. PubMed ID: 31536712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial dysfunction and oxidative stress in seizure-induced neuronal cell death.
    Chuang YC
    Acta Neurol Taiwan; 2010 Mar; 19(1):3-15. PubMed ID: 20711885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(-/+) mice.
    Liang LP; Patel M
    Free Radic Biol Med; 2004 Mar; 36(5):542-54. PubMed ID: 14980699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seizure-induced oxidative stress in temporal lobe epilepsy.
    Puttachary S; Sharma S; Stark S; Thippeswamy T
    Biomed Res Int; 2015; 2015():745613. PubMed ID: 25650148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis.
    Pereira CF; Oliveira CR
    Neurosci Res; 2000 Jul; 37(3):227-36. PubMed ID: 10940457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress.
    Pfeiffer A; Jaeckel M; Lewerenz J; Noack R; Pouya A; Schacht T; Hoffmann C; Winter J; Schweiger S; Schäfer MK; Methner A
    Br J Pharmacol; 2014 Apr; 171(8):2147-58. PubMed ID: 24319993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.
    Hu H; Li M
    Biochem Biophys Res Commun; 2016 Sep; 478(1):174-180. PubMed ID: 27444386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PEDF improves mitochondrial function in RPE cells during oxidative stress.
    He Y; Leung KW; Ren Y; Pei J; Ge J; Tombran-Tink J
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6742-55. PubMed ID: 25212780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy.
    Su Y; Cao N; Zhang D; Wang M
    Ageing Res Rev; 2024 Apr; 96():102248. PubMed ID: 38408490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy.
    Gano LB; Liang LP; Ryan K; Michel CR; Gomez J; Vassilopoulos A; Reisdorph N; Fritz KS; Patel M
    Free Radic Biol Med; 2018 Aug; 123():116-124. PubMed ID: 29778462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production.
    Jong CJ; Azuma J; Schaffer S
    Amino Acids; 2012 Jun; 42(6):2223-32. PubMed ID: 21691752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TRAK1-Mediated Abnormality of Mitochondrial Fission Increases Seizure Susceptibility in Temporal Lobe Epilepsy.
    Wu H; Liu Y; Li H; Du C; Li K; Dong S; Meng Q; Zhang H
    Mol Neurobiol; 2021 Mar; 58(3):1237-1247. PubMed ID: 33119838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria.
    Panov A; Schonfeld P; Dikalov S; Hemendinger R; Bonkovsky HL; Brooks BR
    J Biol Chem; 2009 May; 284(21):14448-56. PubMed ID: 19304986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.