BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19850455)

  • 41. Identification and Characterization of a High Efficiency Aniline Resistance and Degrading Bacterium MC-01.
    Yang L; Ying C; Fang N; Zhong Y; Zhao-Xiang Z; Yun S
    Appl Biochem Biotechnol; 2017 May; 182(1):41-54. PubMed ID: 28050740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial utilization of the industrial wastewater pollutants 2-ethylhexylthioglycolic acid and iso-octylthioglycolic acid by aerobic gram-negative bacteria.
    Toups M; Wübbeler JH; Steinbüchel A
    Biodegradation; 2010 Apr; 21(2):309-19. PubMed ID: 19789984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1.
    Zhang LL; He D; Chen JM; Liu Y
    J Hazard Mater; 2010 Jul; 179(1-3):875-82. PubMed ID: 20417029
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and characterization of a bacterium able to degrade high concentrations of iprodione.
    Cao L; Shi W; Shu R; Pang J; Liu Y; Zhang X; Lei Y
    Can J Microbiol; 2018 Jan; 64(1):49-56. PubMed ID: 29219613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Isolation and characterization of a halotolerant p-nitroaniline degrading strain S8].
    Song CX; Deng XP; Li T; Xiao W
    Huan Jing Ke Xue; 2014 Mar; 35(3):1176-82. PubMed ID: 24881414
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Isolation and characterization of two aniline-degrading strains and compare of functional genes].
    Ren SZ; Guo J; Zeng GQ; Cen YH; Sun GP
    Huan Jing Ke Xue; 2006 Dec; 27(12):2525-30. PubMed ID: 17304852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3.
    Zhang T; Zhang J; Liu S; Liu Z
    J Environ Sci (China); 2008; 20(6):717-24. PubMed ID: 18763567
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment.
    Urata M; Uchida E; Nojiri H; Omori T; Obo R; Miyaura N; Ouchiyama N
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2457-65. PubMed ID: 15618615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A newly isolated strain capable of effectively degrading tetrahydrofuran and its performance in a continuous flow system.
    Chen JM; Zhou YY; Chen DZ; Jin XJ
    Bioresour Technol; 2010 Aug; 101(16):6461-7. PubMed ID: 20381342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low-temperature biodegradation of aniline by freely suspended and magnetic modified Pseudomonas migulae AN-1.
    Liu YB; Qu D; Wen YJ; Ren HJ
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5317-26. PubMed ID: 25620371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9.
    Liang Q; Takeo M; Chen M; Zhang W; Xu Y; Lin M
    Microbiology (Reading); 2005 Oct; 151(Pt 10):3435-3446. PubMed ID: 16207925
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A high level of accumulation of 2-hydroxymuconic 6-semialdehyde from aniline by the transpositional mutant Y-2 of Pseudomonas species AW-2.
    Aoki K; Kodama N; Murakami S; Shinke R
    Microbiol Res; 1997 Jul; 152(2):129-35. PubMed ID: 9265767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradation of nitrobenzene in a lysogeny broth medium by a novel halophilic bacterium Bacillus licheniformis.
    Li T; Deng X; Wang J; Chen Y; He L; Sun Y; Song C; Zhou Z
    Mar Pollut Bull; 2014 Dec; 89(1-2):384-389. PubMed ID: 25440194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization and plasmid profile of an inhibitory strain of Erwinia herbicola isolated from Phaseolous vulgaris in Egypt.
    el-Hendawy HH; Azab EA
    Microbiol Res; 1999 Jan; 153(4):341-8. PubMed ID: 10052157
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synergistic removal of aniline by carbon nanotubes and the enzymes of Delftia sp. XYJ6.
    Yan H; Yang X; Chen J; Yin C; Xiao C; Chen H
    J Environ Sci (China); 2011; 23(7):1165-70. PubMed ID: 22125910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini.
    Schnell S; Bak F; Pfennig N
    Arch Microbiol; 1989; 152(6):556-63. PubMed ID: 2589921
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of aniline degradation by yeast strain Candida methanosorbosa BP-6.
    Mucha K; Kwapisz E; Kucharska U; Okruszeki A
    Pol J Microbiol; 2010; 59(4):311-5. PubMed ID: 21466051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Physiology of aniline catabolism by achromobacter Ir2].
    Rabsch W; Fritsche W
    Z Allg Mikrobiol; 1977; 17(2):139-48. PubMed ID: 868083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.
    Kayashima T; Suzuki H; Maeda T; Ogawa HI
    Chemosphere; 2013 May; 91(9):1338-43. PubMed ID: 23466276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complete biodegradation of fungicide carboxin and its metabolite aniline by Delftia sp. HFL-1.
    Li S; Geng Y; Bao C; Mei Q; Shi T; Ma X; Hua R; Fang L
    Sci Total Environ; 2024 Feb; 912():168957. PubMed ID: 38030002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.