BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19850472)

  • 1. Immobilization of intracellular carbonyl reductase from Geotrichum candidum for the stereoselective reduction of 1-naphthyl ketone.
    Bhattacharyya MS; Singh A; Banerjee UC
    Bioresour Technol; 2010 Mar; 101(6):1581-6. PubMed ID: 19850472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports.
    López-Gallego F; Betancor L; Mateo C; Hidalgo A; Alonso-Morales N; Dellamora-Ortiz G; Guisán JM; Fernández-Lafuente R
    J Biotechnol; 2005 Sep; 119(1):70-5. PubMed ID: 16039744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of carbonyl reductase production of Geotrichum candidum for the transformation of 1-acetonaphthone to S(-)-1-(1'-napthyl) ethanol.
    Bhattacharyya MS; Banerjee UC
    Bioresour Technol; 2007 Jul; 98(10):1958-63. PubMed ID: 17027259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance.
    Fernández-Lorente G; Palomo JM; Mateo C; Munilla R; Ortiz C; Cabrera Z; Guisán JM; Fernandez-Lafuente R
    Biomacromolecules; 2006 Sep; 7(9):2610-5. PubMed ID: 16961324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoporous silica glass for the immobilization of interactive enzyme systems.
    Buthe A; Wu S; Wang P
    Methods Mol Biol; 2011; 679():37-48. PubMed ID: 20865387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.
    Johnson PA; Park HJ; Driscoll AJ
    Methods Mol Biol; 2011; 679():183-91. PubMed ID: 20865397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The immobilization of enzyme on Eupergit® supports by covalent attachment.
    Knezević-Jugović ZD; Bezbradica DI; Mijin DZ; Antov MG
    Methods Mol Biol; 2011; 679():99-111. PubMed ID: 20865391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for a highly (S)-enantioselective reductase towards aliphatic ketones with only one carbon difference between side chain.
    Koesoema AA; Sugiyama Y; Xu Z; Standley DM; Senda M; Senda T; Matsuda T
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9543-9553. PubMed ID: 31482280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to the field of enzyme immobilization and stabilization.
    Moehlenbrock MJ; Minteer SD
    Methods Mol Biol; 2011; 679():1-7. PubMed ID: 20865383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilisation of cyclodextrin glucanotransferase from Bacillus circulans ATCC 21783 on purified seasand.
    Iyer JL; Shetty P; Pai JS
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):47-51. PubMed ID: 12545386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaraldehyde-mediated protein immobilization.
    López-Gallego F; Guisán JM; Betancor L
    Methods Mol Biol; 2013; 1051():33-41. PubMed ID: 23934796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme stabilization via cross-linked enzyme aggregates.
    Gupta MN; Raghava S
    Methods Mol Biol; 2011; 679():133-45. PubMed ID: 20865393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of carbonyl reductase by Geotrichum candidum in a laboratory scale bioreactor.
    Bhattacharyya MS; Singh A; Banerjee UC
    Bioresour Technol; 2008 Dec; 99(18):8765-70. PubMed ID: 18513958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates.
    Lee J; Kim J; Kim J; Jia H; Kim MI; Kwak JH; Jin S; Dohnalkova A; Park HG; Chang HN; Wang P; Grate JW; Hyeon T
    Small; 2005 Jul; 1(7):744-53. PubMed ID: 17193518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica-immobilized enzymes for multi-step synthesis in microfluidic devices.
    Luckarift HR; Ku BS; Dordick JS; Spain JC
    Biotechnol Bioeng; 2007 Oct; 98(3):701-5. PubMed ID: 17415802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling multienzyme biocatalysis using nanoporous materials.
    El-Zahab B; Jia H; Wang P
    Biotechnol Bioeng; 2004 Jul; 87(2):178-83. PubMed ID: 15236246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable and efficient immobilization technique of aldolase under consecutive microwave irradiation at low temperature.
    Wang A; Wang M; Wang Q; Chen F; Zhang F; Li H; Zeng Z; Xie T
    Bioresour Technol; 2011 Jan; 102(2):469-74. PubMed ID: 20843684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of a very stable immobilized biocatalyst of glucose oxidase from Aspergillus niger.
    Betancor L; López-Gallego F; Hidalgo A; Alonso-Morales N; Dellamora-Ortiz G; Guisán JM; Fernández-Lafuente R
    J Biotechnol; 2006 Jan; 121(2):284-9. PubMed ID: 16153734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Enzymes on Supports Activated with Glutaraldehyde: A Very Simple Immobilization Protocol.
    López-Gallego F; Guisan JM; Betancor L
    Methods Mol Biol; 2020; 2100():119-127. PubMed ID: 31939119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent.
    Xiang X; Suo H; Xu C; Hu Y
    Colloids Surf B Biointerfaces; 2018 May; 165():262-269. PubMed ID: 29499527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.