BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19850480)

  • 21. Unifying mechanism for addiction and toxicity of abused drugs with application to dopamine and glutamate mediators: electron transfer and reactive oxygen species.
    Kovacic P
    Med Hypotheses; 2005; 65(1):90-6. PubMed ID: 15893124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein oxidation and aging.
    Stadtman ER
    Free Radic Res; 2006 Dec; 40(12):1250-8. PubMed ID: 17090414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin.
    Petrosillo G; Matera M; Casanova G; Ruggiero FM; Paradies G
    Neurochem Int; 2008 Nov; 53(5):126-31. PubMed ID: 18657582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hallmarks of protein oxidative damage in neurodegenerative diseases: focus on Alzheimer's disease.
    Polidori MC; Griffiths HR; Mariani E; Mecocci P
    Amino Acids; 2007; 32(4):553-9. PubMed ID: 17273806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species in cardiac signalling: from mitochondria to plasma membrane ion channels.
    Hool LC
    Clin Exp Pharmacol Physiol; 2006; 33(1-2):146-51. PubMed ID: 16445714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation.
    Penna C; Rastaldo R; Mancardi D; Raimondo S; Cappello S; Gattullo D; Losano G; Pagliaro P
    Basic Res Cardiol; 2006 Mar; 101(2):180-9. PubMed ID: 16450075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactive oxygen-mediated protein oxidation in aging and disease.
    Stadtman ER; Berlett BS
    Drug Metab Rev; 1998 May; 30(2):225-43. PubMed ID: 9606602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin.
    Petrosillo G; Matera M; Moro N; Ruggiero FM; Paradies G
    Free Radic Biol Med; 2009 Jan; 46(1):88-94. PubMed ID: 18973802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox signaling in hypertension.
    Paravicini TM; Touyz RM
    Cardiovasc Res; 2006 Jul; 71(2):247-58. PubMed ID: 16765337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: relevance for the pathogenesis of Parkinson's disease.
    Thomas MP; Chartrand K; Reynolds A; Vitvitsky V; Banerjee R; Gendelman HE
    J Neurochem; 2007 Jan; 100(2):503-19. PubMed ID: 17241161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels.
    Oliveira FA; Galan DT; Ribeiro AM; Santos Cruz J
    Brain Res; 2007 Feb; 1134(1):79-86. PubMed ID: 17196946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead.
    Hensley K; Floyd RA
    Arch Biochem Biophys; 2002 Jan; 397(2):377-83. PubMed ID: 11795897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced ROS-generation in lymphocytes from Alzheimer's patients.
    Leutner S; Schindowski K; Frölich L; Maurer K; Kratzsch T; Eckert A; Müller WE
    Pharmacopsychiatry; 2005 Nov; 38(6):312-5. PubMed ID: 16342003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radicals in the physiological control of cell function.
    Dröge W
    Physiol Rev; 2002 Jan; 82(1):47-95. PubMed ID: 11773609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?
    de Vries HE; Witte M; Hondius D; Rozemuller AJ; Drukarch B; Hoozemans J; van Horssen J
    Free Radic Biol Med; 2008 Nov; 45(10):1375-83. PubMed ID: 18824091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane protein oxidation determines neuronal degeneration.
    Hajieva P; Bayatti N; Granold M; Behl C; Moosmann B
    J Neurochem; 2015 May; 133(3):352-67. PubMed ID: 25393523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging.
    Peers C; Boyle JP
    Antioxid Redox Signal; 2015 Feb; 22(6):505-21. PubMed ID: 25333910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment.
    Demidchik V; Straltsova D; Medvedev SS; Pozhvanov GA; Sokolik A; Yurin V
    J Exp Bot; 2014 Mar; 65(5):1259-70. PubMed ID: 24520019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation of ion channels in the aging nervous system.
    Patel R; Sesti F
    Brain Res; 2016 May; 1639():174-85. PubMed ID: 26947620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of a potassium channel causes progressive sensory function loss during aging.
    Cai SQ; Sesti F
    Nat Neurosci; 2009 May; 12(5):611-7. PubMed ID: 19330004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.