These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 19850518)

  • 1. Identifying symmetry in running gait using a single inertial sensor.
    Lee JB; Sutter KJ; Askew CD; Burkett BJ
    J Sci Med Sport; 2010 Sep; 13(5):559-63. PubMed ID: 19850518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of inertial sensor technology in the discrimination of human gait.
    Little C; Lee JB; James DA; Davison K
    J Sports Sci; 2013; 31(12):1312-8. PubMed ID: 23679899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of a single inertial sensor to identify stride, step, and stance durations of running gait.
    Lee JB; Mellifont RB; Burkett BJ
    J Sci Med Sport; 2010 Mar; 13(2):270-3. PubMed ID: 19574098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A smart device inertial-sensing method for gait analysis.
    Steins D; Sheret I; Dawes H; Esser P; Collett J
    J Biomech; 2014 Nov; 47(15):3780-5. PubMed ID: 25305689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of three different running gait cues on vertical tibial acceleration.
    Anderson LM; Bonanno DR; Sritharan P; Menz HB
    Gait Posture; 2024 Feb; 108():164-169. PubMed ID: 38096737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking.
    Floor-Westerdijk MJ; Schepers HM; Veltink PH; van Asseldonk EH; Buurke JH
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2080-4. PubMed ID: 22665499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics.
    Reenalda J; Maartens E; Homan L; Buurke JHJ
    J Biomech; 2016 Oct; 49(14):3362-3367. PubMed ID: 27616268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic stability during running gait termination: Predictors for successful control of forward momentum in children and adults.
    Cesar GM; Sigward SM
    Hum Mov Sci; 2016 Aug; 48():37-43. PubMed ID: 27101563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of speed and step frequency during walking and running on motion sensor output.
    Rowlands AV; Stone MR; Eston RG
    Med Sci Sports Exerc; 2007 Apr; 39(4):716-27. PubMed ID: 17414811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations.
    Johnson CD; Outerleys J; Tenforde AS; Davis IS
    J Biomech; 2020 Dec; 113():110118. PubMed ID: 33197691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data.
    McCamley J; Donati M; Grimpampi E; Mazzà C
    Gait Posture; 2012 Jun; 36(2):316-8. PubMed ID: 22465705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-Related Changes in Running Gait Patterns Persist in the Days Following a Marathon Race.
    Clermont CA; Pohl AJ; Ferber R
    J Sport Rehabil; 2020 Sep; 29(7):934-941. PubMed ID: 31825892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single Sacral-Mounted Inertial Measurement Unit to Estimate Peak Vertical Ground Reaction Force, Contact Time, and Flight Time in Running.
    Patoz A; Lussiana T; Breine B; Gindre C; Malatesta D
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of vertical displacement in running, a methodological comparison.
    Gullstrand L; Halvorsen K; Tinmark F; Eriksson M; Nilsson J
    Gait Posture; 2009 Jul; 30(1):71-5. PubMed ID: 19356933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of a single sacral marker method to approximate the centre of mass trajectory during treadmill running.
    Napier C; Jiang X; MacLean CL; Menon C; Hunt MA
    J Biomech; 2020 Jul; 108():109886. PubMed ID: 32636000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating effective contact and flight times using a sacral-mounted inertial measurement unit.
    Patoz A; Lussiana T; Breine B; Gindre C; Malatesta D
    J Biomech; 2021 Oct; 127():110667. PubMed ID: 34365285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both a single sacral marker and the whole-body center of mass accurately estimate peak vertical ground reaction force in running.
    Patoz A; Lussiana T; Breine B; Gindre C; Malatesta D
    Gait Posture; 2021 Sep; 89():186-192. PubMed ID: 34325223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human runners exhibit a least variable gait speed.
    Cher PH; Worringham CJ; Stewart IB
    J Sports Sci; 2017 Nov; 35(22):2211-2219. PubMed ID: 27935430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.