These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 19850926)
21. Haploinsufficiency of EXT1 and Heparan Sulphate Deficiency Associated with Hereditary Multiple Exostoses in a Pakistani Family. Ajmal M; Muhammad H; Nasir M; Shoaib M; Malik SA; Ullah I Medicina (Kaunas); 2022 Dec; 59(1):. PubMed ID: 36676722 [No Abstract] [Full Text] [Related]
22. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Sgariglia F; Candela ME; Huegel J; Jacenko O; Koyama E; Yamaguchi Y; Pacifici M; Enomoto-Iwamoto M Bone; 2013 Nov; 57(1):220-31. PubMed ID: 23958822 [TBL] [Abstract][Full Text] [Related]
23. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Billings PC; Pacifici M Connect Tissue Res; 2015; 56(4):272-80. PubMed ID: 26076122 [TBL] [Abstract][Full Text] [Related]
24. Biosynthesis of heparan sulfate in EXT1-deficient cells. Okada M; Nadanaka S; Shoji N; Tamura J; Kitagawa H Biochem J; 2010 May; 428(3):463-71. PubMed ID: 20377530 [TBL] [Abstract][Full Text] [Related]
25. Multiple roles of epithelial heparan sulfate in stomach morphogenesis. Huang M; He H; Belenkaya T; Lin X J Cell Sci; 2018 May; 131(10):. PubMed ID: 29700203 [TBL] [Abstract][Full Text] [Related]
26. Heparan sulfate is necessary for the early formation of nascent fibronectin and collagen I fibrils at matrix assembly sites. Hill KE; Lovett BM; Schwarzbauer JE J Biol Chem; 2022 Jan; 298(1):101479. PubMed ID: 34890641 [TBL] [Abstract][Full Text] [Related]
27. Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones. Zak BM; Schuksz M; Koyama E; Mundy C; Wells DE; Yamaguchi Y; Pacifici M; Esko JD Bone; 2011 May; 48(5):979-87. PubMed ID: 21310272 [TBL] [Abstract][Full Text] [Related]
28. Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function. Mooij HL; Cabrales P; Bernelot Moens SJ; Xu D; Udayappan SD; Tsai AG; van der Sande MA; de Groot E; Intaglietta M; Kastelein JJ; Dallinga-Thie GM; Esko JD; Stroes ES; Nieuwdorp M J Am Heart Assoc; 2014 Dec; 3(6):e001274. PubMed ID: 25468659 [TBL] [Abstract][Full Text] [Related]
29. Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. Kraushaar DC; Rai S; Condac E; Nairn A; Zhang S; Yamaguchi Y; Moremen K; Dalton S; Wang L J Biol Chem; 2012 Jun; 287(27):22691-700. PubMed ID: 22556407 [TBL] [Abstract][Full Text] [Related]
30. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses. Huegel J; Mundy C; Sgariglia F; Nygren P; Billings PC; Yamaguchi Y; Koyama E; Pacifici M Dev Biol; 2013 May; 377(1):100-12. PubMed ID: 23458899 [TBL] [Abstract][Full Text] [Related]
31. Osteoblastic heparan sulfate regulates osteoprotegerin function and bone mass. Nozawa S; Inubushi T; Irie F; Takigami I; Matsumoto K; Shimizu K; Akiyama H; Yamaguchi Y JCI Insight; 2018 Feb; 3(3):. PubMed ID: 29415886 [TBL] [Abstract][Full Text] [Related]
32. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling. Zhang R; Cao P; Yang Z; Wang Z; Wu JL; Chen Y; Pan Y PLoS One; 2015; 10(8):e0136518. PubMed ID: 26295701 [TBL] [Abstract][Full Text] [Related]
33. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Huegel J; Sgariglia F; Enomoto-Iwamoto M; Koyama E; Dormans JP; Pacifici M Dev Dyn; 2013 Sep; 242(9):1021-32. PubMed ID: 23821404 [TBL] [Abstract][Full Text] [Related]
34. Herpes simplex virus: discovering the link between heparan sulphate and hereditary bone tumours. McCormick C; Duncan G; Tufaro F Rev Med Virol; 2000; 10(6):373-84. PubMed ID: 11114076 [TBL] [Abstract][Full Text] [Related]
35. Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo. Shimokawa K; Kimura-Yoshida C; Nagai N; Mukai K; Matsubara K; Watanabe H; Matsuda Y; Mochida K; Matsuo I Dev Cell; 2011 Aug; 21(2):257-72. PubMed ID: 21839920 [TBL] [Abstract][Full Text] [Related]
36. Mutations in the heparan sulfate backbone elongating enzymes EXT1 and EXT2 have no major effect on endothelial glycocalyx and the glomerular filtration barrier. Khalil R; Boels MGS; ; van den Berg BM; Bruijn JA; Rabelink TJ; Hogendoorn PCW; Baelde HJ Mol Genet Genomics; 2022 Mar; 297(2):397-405. PubMed ID: 35103870 [TBL] [Abstract][Full Text] [Related]
37. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Inatani M; Irie F; Plump AS; Tessier-Lavigne M; Yamaguchi Y Science; 2003 Nov; 302(5647):1044-6. PubMed ID: 14605369 [TBL] [Abstract][Full Text] [Related]
38. 6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture. Sugaya N; Habuchi H; Nagai N; Ashikari-Hada S; Kimata K J Biol Chem; 2008 Apr; 283(16):10366-76. PubMed ID: 18281280 [TBL] [Abstract][Full Text] [Related]
39. Heparan sulfate abnormalities in exostosis growth plates. Hecht JT; Hall CR; Snuggs M; Hayes E; Haynes R; Cole WG Bone; 2002 Jul; 31(1):199-204. PubMed ID: 12110435 [TBL] [Abstract][Full Text] [Related]
40. Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenic protein signaling and severe skeletal defects. Matsumoto Y; Matsumoto K; Irie F; Fukushi J; Stallcup WB; Yamaguchi Y J Biol Chem; 2010 Jun; 285(25):19227-34. PubMed ID: 20404326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]