These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 19851280)

  • 1. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases.
    Lahiri DK; Maloney B; Zawia NH
    Mol Psychiatry; 2009 Nov; 14(11):992-1003. PubMed ID: 19851280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How and when environmental agents and dietary factors affect the course of Alzheimer's disease: the "LEARn" model (latent early-life associated regulation) may explain the triggering of AD.
    Lahiri DK; Maloney B; Basha MR; Ge YW; Zawia NH
    Curr Alzheimer Res; 2007 Apr; 4(2):219-28. PubMed ID: 17430250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early-life events may trigger biochemical pathways for Alzheimer's disease: the "LEARn" model.
    Lahiri DK; Zawia NH; Greig NH; Sambamurti K; Maloney B
    Biogerontology; 2008 Dec; 9(6):375-9. PubMed ID: 18668339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The "LEARn" (Latent Early-life Associated Regulation) model integrates environmental risk factors and the developmental basis of Alzheimer's disease, and proposes remedial steps.
    Lahiri DK; Maloney B
    Exp Gerontol; 2010 Apr; 45(4):291-6. PubMed ID: 20064601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying epigenetics to Alzheimer's disease via the latent early-life associated regulation (LEARn) model.
    Maloney B; Sambamurti K; Zawia N; Lahiri DK
    Curr Alzheimer Res; 2012 Jun; 9(5):589-99. PubMed ID: 22300406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "LEARn" (latent early-life associated regulation) model: an epigenetic pathway linking metabolic and cognitive disorders.
    Lahiri DK; Maloney B
    J Alzheimers Dis; 2012; 30 Suppl 2():S15-30. PubMed ID: 22555376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Posttraumatic stress disorder (PTSD) as a consequence of the interaction between an individual genetic susceptibility, a traumatogenic event and a social context].
    Auxéméry Y
    Encephale; 2012 Oct; 38(5):373-80. PubMed ID: 23062450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Epigenetics' implication in autism spectrum disorders: A review].
    Hamza M; Halayem S; Mrad R; Bourgou S; Charfi F; Belhadj A
    Encephale; 2017 Aug; 43(4):374-381. PubMed ID: 27692350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenerational latent early-life associated regulation unites environment and genetics across generations.
    Lahiri DK; Maloney B; Bayon BL; Chopra N; White FA; Greig NH; Nurnberger JI
    Epigenomics; 2016 Mar; 8(3):373-87. PubMed ID: 26950428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetics and Neural developmental disorders: Washington DC, September 18 and 19, 2006.
    Zhao X; Pak C; Smrt RD; Jin P
    Epigenetics; 2007; 2(2):126-34. PubMed ID: 17965627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurobiological disease etiology and inheritance: an epigenetic perspective.
    Saab BJ; Mansuy IM
    J Exp Biol; 2014 Jan; 217(Pt 1):94-101. PubMed ID: 24353208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic Basis of Lead-Induced Neurological Disorders.
    Wang T; Zhang J; Xu Y
    Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32645824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 30: historical aspects of the major neurological vitamin deficiency disorders: the water-soluble B vitamins.
    Lanska DJ
    Handb Clin Neurol; 2010; 95():445-76. PubMed ID: 19892133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of histone H3K4 methylation in brain development and disease.
    Shen E; Shulha H; Weng Z; Akbarian S
    Philos Trans R Soc Lond B Biol Sci; 2014 Sep; 369(1652):. PubMed ID: 25135975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental risk factors and the developmental basis for Alzheimer's disease.
    Zawia NH; Basha MR
    Rev Neurosci; 2005; 16(4):325-37. PubMed ID: 16519009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do epigenetic pathways initiate late onset Alzheimer disease (LOAD): towards a new paradigm.
    Bihaqi SW; Schumacher A; Maloney B; Lahiri DK; Zawia NH
    Curr Alzheimer Res; 2012 Jun; 9(5):574-88. PubMed ID: 22300405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders.
    Ben-Ari Y
    Trends Neurosci; 2008 Dec; 31(12):626-36. PubMed ID: 18951639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetics, oxidative stress, and Alzheimer disease.
    Zawia NH; Lahiri DK; Cardozo-Pelaez F
    Free Radic Biol Med; 2009 May; 46(9):1241-9. PubMed ID: 19245828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation.
    Ricq EL; Hooker JM; Haggarty SJ
    Psychiatry Clin Neurosci; 2016 Dec; 70(12):536-550. PubMed ID: 27485392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in nutrition, genes and brain health.
    Dauncey MJ
    Proc Nutr Soc; 2012 Nov; 71(4):581-91. PubMed ID: 22716958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.