These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 19851339)

  • 41. A quality assessment of genetic association studies supporting susceptibility and outcome in acute lung injury.
    Flores C; Pino-Yanes Mdel M; Villar J
    Crit Care; 2008; 12(5):R130. PubMed ID: 18950526
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Meta-analysis of heterogeneous data sources for genome-scale identification of risk genes in complex phenotypes.
    Pers TH; Hansen NT; Lage K; Koefoed P; Dworzynski P; Miller ML; Flint TJ; Mellerup E; Dam H; Andreassen OA; Djurovic S; Melle I; Børglum AD; Werge T; Purcell S; Ferreira MA; Kouskoumvekaki I; Workman CT; Hansen T; Mors O; Brunak S
    Genet Epidemiol; 2011 Jul; 35(5):318-32. PubMed ID: 21484861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigating Hardy-Weinberg equilibrium in case-control or cohort studies or meta-analysis.
    Ziegler A; Van Steen K; Wellek S
    Breast Cancer Res Treat; 2011 Jul; 128(1):197-201. PubMed ID: 21184275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methods for combining multiple genome-wide linkage studies.
    Kippola TA; Santorico SA
    Methods Mol Biol; 2010; 620():541-60. PubMed ID: 20652521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data.
    Shi J; Park JH; Duan J; Berndt ST; Moy W; Yu K; Song L; Wheeler W; Hua X; Silverman D; Garcia-Closas M; Hsiung CA; Figueroa JD; Cortessis VK; Malats N; Karagas MR; Vineis P; Chang IS; Lin D; Zhou B; Seow A; Matsuo K; Hong YC; Caporaso NE; Wolpin B; Jacobs E; Petersen GM; Klein AP; Li D; Risch H; Sanders AR; Hsu L; Schoen RE; Brenner H; ; ; ; ; ; ; Stolzenberg-Solomon R; Gejman P; Lan Q; Rothman N; Amundadottir LT; Landi MT; Levinson DF; Chanock SJ; Chatterjee N
    PLoS Genet; 2016 Dec; 12(12):e1006493. PubMed ID: 28036406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Power, false discovery rate and Winner's Curse in eQTL studies.
    Huang QQ; Ritchie SC; Brozynska M; Inouye M
    Nucleic Acids Res; 2018 Dec; 46(22):e133. PubMed ID: 30189032
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration.
    Janssens AC; Ioannidis JP; Bedrosian S; Boffetta P; Dolan SM; Dowling N; Fortier I; Freedman AN; Grimshaw JM; Gulcher J; Gwinn M; Hlatky MA; Janes H; Kraft P; Melillo S; O'Donnell CJ; Pencina MJ; Ransohoff D; Schully SD; Seminara D; Winn DM; Wright CF; van Duijn CM; Little J; Khoury MJ
    Eur J Clin Invest; 2011 Sep; 41(9):1010-35. PubMed ID: 21434890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A generalized weighting regression-derived meta-analysis estimator robust to small-study effects and heterogeneity.
    Moreno SG; Sutton AJ; Thompson JR; Ades AE; Abrams KR; Cooper NJ
    Stat Med; 2012 Jun; 31(14):1407-17. PubMed ID: 22351645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Power estimation and sample size determination for replication studies of genome-wide association studies.
    Jiang W; Yu W
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):3. PubMed ID: 26818952
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strengthening the reporting of genetic risk prediction studies: the GRIPS statement.
    Janssens AC; Ioannidis JP; van Duijn CM; Little J; Khoury MJ;
    Eur J Clin Invest; 2011 Sep; 41(9):1004-9. PubMed ID: 21434891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quasi-empirical Bayes methodology for improving meta-analysis.
    Saleh AK; Hassanein KM; Hassanein RS; Kim HM
    J Biopharm Stat; 2006; 16(1):77-90. PubMed ID: 16440838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review and further developments in statistical corrections for Winner's Curse in genetic association studies.
    Forde A; Hemani G; Ferguson J
    PLoS Genet; 2023 Sep; 19(9):e1010546. PubMed ID: 37721937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Required sample size and nonreplicability thresholds for heterogeneous genetic associations.
    Moonesinghe R; Khoury MJ; Liu T; Ioannidis JP
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):617-22. PubMed ID: 18174335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Statistical issues in gene association studies.
    Watanabe RM
    Methods Mol Biol; 2011; 700():17-36. PubMed ID: 21204024
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesizer 1.0: a varying-coefficient meta-analytic tool.
    Krizan Z
    Behav Res Methods; 2010 Aug; 42(3):863-70. PubMed ID: 20805608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies.
    Zhong H; Prentice RL
    Biostatistics; 2008 Oct; 9(4):621-34. PubMed ID: 18310059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying and correcting for the winner's curse in quantitative-trait association studies.
    Xiao R; Boehnke M
    Genet Epidemiol; 2011 Apr; 35(3):133-8. PubMed ID: 21284035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BR-squared: a practical solution to the winner's curse in genome-wide scans.
    Sun L; Dimitromanolakis A; Faye LL; Paterson AD; Waggott D; ; Bull SB
    Hum Genet; 2011 May; 129(5):545-52. PubMed ID: 21246217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Meta-analysis of genetic association studies.
    Munafò MR; Flint J
    Trends Genet; 2004 Sep; 20(9):439-44. PubMed ID: 15313553
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Candidate gene association studies.
    Teare MD
    Methods Mol Biol; 2011; 713():105-17. PubMed ID: 21153614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.