BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 19851794)

  • 1. Structural organization of human Cu-transporting ATPases: learning from building blocks.
    Barry AN; Shinde U; Lutsenko S
    J Biol Inorg Chem; 2010 Jan; 15(1):47-59. PubMed ID: 19851794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical basis of regulation of human copper-transporting ATPases.
    Lutsenko S; LeShane ES; Shinde U
    Arch Biochem Biophys; 2007 Jul; 463(2):134-48. PubMed ID: 17562324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Structure and function of ATP7A and ATP7B proteins--Cu-transporting ATPases].
    Lenartowicz M; Krzeptowski W
    Postepy Biochem; 2010; 56(3):317-27. PubMed ID: 21117320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function and regulation of human copper-transporting ATPases.
    Lutsenko S; Barnes NL; Bartee MY; Dmitriev OY
    Physiol Rev; 2007 Jul; 87(3):1011-46. PubMed ID: 17615395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance.
    Lutsenko S; Gupta A; Burkhead JL; Zuzel V
    Arch Biochem Biophys; 2008 Aug; 476(1):22-32. PubMed ID: 18534184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins.
    Linz R; Lutsenko S
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):403-7. PubMed ID: 18000748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A.
    Yu CH; Dolgova NV; Dmitriev OY
    IUBMB Life; 2017 Apr; 69(4):226-235. PubMed ID: 28271598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations.
    Dmitriev O; Tsivkovskii R; Abildgaard F; Morgan CT; Markley JL; Lutsenko S
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5302-7. PubMed ID: 16567646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B.
    Singleton WCJ; McInnes KT; Cater MA; Winnall WR; McKirdy R; Yu Y; Taylor PE; Ke BX; Richardson DR; Mercer JFB; La Fontaine S
    J Biol Chem; 2010 Aug; 285(35):27111-27121. PubMed ID: 20566629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of platinum anticancer drugs by human copper ATPases ATP7A and ATP7B.
    Tadini-Buoninsegni F; Bartolommei G; Moncelli MR; Inesi G; Galliani A; Sinisi M; Losacco M; Natile G; Arnesano F
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1297-301. PubMed ID: 24375922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lumenal loop Met672-Pro707 of copper-transporting ATPase ATP7A binds metals and facilitates copper release from the intramembrane sites.
    Barry AN; Otoikhian A; Bhatt S; Shinde U; Tsivkovskii R; Blackburn NJ; Lutsenko S
    J Biol Chem; 2011 Jul; 286(30):26585-94. PubMed ID: 21646353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Function of Cu(I)- and Zn(II)-ATPases.
    Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P
    Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insights of Wilson disease copper-transporting ATPase.
    Fatemi N; Sarkar B
    J Bioenerg Biomembr; 2002 Oct; 34(5):339-49. PubMed ID: 12539961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a molecular understanding of metal transport by P(1B)-type ATPases.
    Rosenzweig AC; Argüello JM
    Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP dependent charge movement in ATP7B Cu+-ATPase is demonstrated by pre-steady state electrical measurements.
    Tadini-Buoninsegni F; Bartolommei G; Moncelli MR; Pilankatta R; Lewis D; Inesi G
    FEBS Lett; 2010 Nov; 584(22):4619-22. PubMed ID: 20965182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1.
    Arumugam K; Crouzy S
    Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B.
    Tadini-Buoninsegni F; Smeazzetto S
    IUBMB Life; 2017 Apr; 69(4):218-225. PubMed ID: 28164426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells.
    Guo Y; Nyasae L; Braiterman LT; Hubbard AL
    Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G904-16. PubMed ID: 15994426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.