These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 19851838)
1. Preparation and characterization of porous alginate scaffolds containing various amounts of octacalcium phosphate (OCP) crystals. Shiraishi N; Anada T; Honda Y; Masuda T; Sasaki K; Suzuki O J Mater Sci Mater Med; 2010 Mar; 21(3):907-14. PubMed ID: 19851838 [TBL] [Abstract][Full Text] [Related]
2. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration. Fuji T; Anada T; Honda Y; Shiwaku Y; Koike H; Kamakura S; Sasaki K; Suzuki O Tissue Eng Part A; 2009 Nov; 15(11):3525-35. PubMed ID: 19456237 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of osteoblastic differentiation in alginate gel beads with bioactive octacalcium phosphate particles. Endo K; Anada T; Yamada M; Seki M; Sasaki K; Suzuki O Biomed Mater; 2015 Dec; 10(6):065019. PubMed ID: 26657659 [TBL] [Abstract][Full Text] [Related]
4. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid. Ilie A; Ghiţulică C; Andronescu E; Cucuruz A; Ficai A Int J Pharm; 2016 Aug; 510(2):501-7. PubMed ID: 26784979 [TBL] [Abstract][Full Text] [Related]
5. Formation of bone-like apatite enhanced by hydrolysis of octacalcium phosphate crystals deposited in collagen matrix. Honda Y; Kamakura S; Sasaki K; Suzuki O J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):281-9. PubMed ID: 16850470 [TBL] [Abstract][Full Text] [Related]
6. In Vivo feature of the regenerative potential of chitosan and alginate based osteoplastic composites doped with calcium phosphates, zinc ions, and vitamin D2. Korenkov O; Sukhodub L; Kumeda M; Sukhodub L Ann Anat; 2024 Aug; 255():152290. PubMed ID: 38821427 [TBL] [Abstract][Full Text] [Related]
7. Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. Valenzuela F; Covarrubias C; Martínez C; Smith P; Díaz-Dosque M; Yazdani-Pedram M J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1672-82. PubMed ID: 22707209 [TBL] [Abstract][Full Text] [Related]
8. Controlled mineralisation and recrystallisation of brushite within alginate hydrogels. Bjørnøy SH; Bassett DC; Ucar S; Andreassen JP; Sikorski P Biomed Mater; 2016 Feb; 11(1):015013. PubMed ID: 26836293 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. Ribeiro CC; Barrias CC; Barbosa MA J Mater Sci Mater Med; 2006 May; 17(5):455-63. PubMed ID: 16688586 [TBL] [Abstract][Full Text] [Related]
10. The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects. Handa T; Anada T; Honda Y; Yamazaki H; Kobayashi K; Kanda N; Kamakura S; Echigo S; Suzuki O Acta Biomater; 2012 Mar; 8(3):1190-200. PubMed ID: 22198138 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterizations of alginate-α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. Das D; Zhang S; Noh I Biomed Mater; 2018 Jan; 13(2):025008. PubMed ID: 28956533 [TBL] [Abstract][Full Text] [Related]
12. Granule size-dependent bone regenerative capacity of octacalcium phosphate in collagen matrix. Tanuma Y; Anada T; Honda Y; Kawai T; Kamakura S; Echigo S; Suzuki O Tissue Eng Part A; 2012 Mar; 18(5-6):546-57. PubMed ID: 21942921 [TBL] [Abstract][Full Text] [Related]
13. Synthetic octacalcium phosphate augments bone regeneration correlated with its content in collagen scaffold. Kawai T; Anada T; Honda Y; Kamakura S; Matsui K; Matsui A; Sasaki K; Morimoto S; Echigo S; Suzuki O Tissue Eng Part A; 2009 Jan; 15(1):23-32. PubMed ID: 18637727 [TBL] [Abstract][Full Text] [Related]
14. TEM study of calcium phosphate precipitation on HA/TCP ceramics. Leng Y; Chen J; Qu S Biomaterials; 2003 Jun; 24(13):2125-31. PubMed ID: 12699649 [TBL] [Abstract][Full Text] [Related]
15. Osteoconductive property of a mechanical mixture of octacalcium phosphate and amorphous calcium phosphate. Kobayashi K; Anada T; Handa T; Kanda N; Yoshinari M; Takahashi T; Suzuki O ACS Appl Mater Interfaces; 2014 Dec; 6(24):22602-11. PubMed ID: 25478703 [TBL] [Abstract][Full Text] [Related]
16. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Morimoto S; Anada T; Honda Y; Suzuki O Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587 [TBL] [Abstract][Full Text] [Related]
17. Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration. Cardoso DA; van den Beucken JJ; Both LL; Bender J; Jansen JA; Leeuwenburgh SC J Biomed Mater Res A; 2014 Mar; 102(3):808-17. PubMed ID: 23589413 [TBL] [Abstract][Full Text] [Related]
18. Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration. Mehedi Hasan M; Nuruzzaman Khan M; Haque P; Rahman MM Int J Biol Macromol; 2018 Oct; 117():1110-1117. PubMed ID: 29885393 [TBL] [Abstract][Full Text] [Related]
19. The effect of microstructure of octacalcium phosphate on the bone regenerative property. Honda Y; Anada T; Kamakura S; Morimoto S; Kuriyagawa T; Suzuki O Tissue Eng Part A; 2009 Aug; 15(8):1965-73. PubMed ID: 19132890 [TBL] [Abstract][Full Text] [Related]
20. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks. Xie M; Olderøy MØ; Andreassen JP; Selbach SM; Strand BL; Sikorski P Acta Biomater; 2010 Sep; 6(9):3665-75. PubMed ID: 20359556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]