BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19852012)

  • 1. A rigid helical peptide axle for a [2]rotaxane molecular machine.
    Moretto A; Menegazzo I; Crisma M; Shotton EJ; Nowell H; Mammi S; Toniolo C
    Angew Chem Int Ed Engl; 2009; 48(47):8986-9. PubMed ID: 19852012
    [No Abstract]   [Full Text] [Related]  

  • 2. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes.
    Tachibana Y; Kawasaki H; Kihara N; Takata T
    J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second generation specific-enzyme-activated rotaxane propeptides.
    Fernandes A; Viterisi A; Aucagne V; Leigh DA; Papot S
    Chem Commun (Camb); 2012 Feb; 48(15):2083-5. PubMed ID: 22227715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer across a mechanical bond of a rotaxane.
    Onagi H; Rebek J
    Chem Commun (Camb); 2005 Sep; (36):4604-6. PubMed ID: 16158129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular cage-based [2]rotaxane that behaves as a molecular muscle.
    Chuang CJ; Li WS; Lai CC; Liu YH; Peng SM; Chao I; Chiu SH
    Org Lett; 2009 Jan; 11(2):385-8. PubMed ID: 19099497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building a bridge between peptide chemistry and organic chemistry: intramolecular macrocyclization reactions and supramolecular chemistry with helical peptide substrates.
    Moretto A; Crisma M; Formaggio F; Toniolo C
    Biopolymers; 2010; 94(6):721-32. PubMed ID: 20564031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial molecular chaperone: poly-pseudo-rotaxane with an extensible axle.
    Osaki M; Takashima Y; Yamaguchi H; Harada A
    J Am Chem Soc; 2007 Nov; 129(46):14452-7. PubMed ID: 17973382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlocked host anion recognition by an indolocarbazole-containing [2]rotaxane.
    Brown A; Mullen KM; Ryu J; Chmielewski MJ; Santos SM; Felix V; Thompson AL; Warren JE; Pascu SI; Beer PD
    J Am Chem Soc; 2009 Apr; 131(13):4937-52. PubMed ID: 19296631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane.
    Onagi H; Blake CJ; Easton CJ; Lincoln SF
    Chemistry; 2003 Dec; 9(24):5978-88. PubMed ID: 14679510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes.
    Onagi H; Carrozzini B; Cascarano GL; Easton CJ; Edwards AJ; Lincoln SF; Rae AD
    Chemistry; 2003 Dec; 9(24):5971-7. PubMed ID: 14679509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the chair conformation of a mannopyranose in a large-amplitude [2]rotaxane molecular machine.
    Coutrot F; Busseron E
    Chemistry; 2009; 15(21):5186-90. PubMed ID: 19229918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a [2]rotaxane through first- and second-sphere coordination.
    Blight BA; Wisner JA; Jennings MC
    Chem Commun (Camb); 2006 Nov; (44):4593-5. PubMed ID: 17082853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.
    Bao X; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2006 Sep; 128(37):12229-38. PubMed ID: 16967974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 1,2,3,4,5-pentaphenylferrocene-stoppered rotaxane capable of electrochemical anion recognition.
    Evans NH; Serpell CJ; White NG; Beer PD
    Chemistry; 2011 Oct; 17(44):12347-54. PubMed ID: 21953676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotaxanes capable of recognising chloride in aqueous media.
    Hancock LM; Gilday LC; Carvalho S; Costa PJ; Félix V; Serpell CJ; Kilah NL; Beer PD
    Chemistry; 2010 Nov; 16(44):13082-94. PubMed ID: 21031371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rotaxane turing machine for peptides.
    Wilson CM; Gualandi A; Cozzi PG
    Chembiochem; 2013 Jul; 14(10):1185-7. PubMed ID: 23733510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative rotational motion between alpha-Cyclodextrin Derivatives and a stiff axle molecule.
    Nishimura D; Oshikiri T; Takashima Y; Hashidzume A; Yamaguchi H; Harada A
    J Org Chem; 2008 Apr; 73(7):2496-502. PubMed ID: 18336039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the intracellular delivery of fluoresceinated peptides by a host-[2]rotaxane.
    Wang X; Bao X; McFarland-Mancini M; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2007 Jun; 129(23):7284-93. PubMed ID: 17516642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of amphiphilic bistable [2]rotaxane langmuir monolayers at the air/water interface.
    Jang SS; Jang YH; Kim YH; Goddard WA; Choi JW; Heath JR; Laursen BW; Flood AH; Stoddart JF; Nørgaard K; Bjørnholm T
    J Am Chem Soc; 2005 Oct; 127(42):14804-16. PubMed ID: 16231934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral sensing for amino acid derivative based on a [2]rotaxane composed of an asymmetric rotor and an asymmetric axle.
    Kameta N; Nagawa Y; Karikomi M; Hiratani K
    Chem Commun (Camb); 2006 Sep; (35):3714-6. PubMed ID: 17047821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.