BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1985214)

  • 1. Comparison of the transcriptional activity of the long terminal repeats of simian immunodeficiency viruses SIVmac251 and SIVmac239 in T-cell lines and macrophage cell lines.
    Anderson MG; Clements JE
    J Virol; 1991 Jan; 65(1):51-60. PubMed ID: 1985214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two strains of SIVmac show differential transactivation mediated by sequences in the promoter.
    Anderson MG; Clements JE
    Virology; 1992 Dec; 191(2):559-68. PubMed ID: 1448914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus.
    Sparger EE; Shacklett BL; Renshaw-Gegg L; Barry PA; Pedersen NC; Elder JH; Luciw PA
    Virology; 1992 Mar; 187(1):165-77. PubMed ID: 1310554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequences just upstream of the simian immunodeficiency virus core enhancer allow efficient replication in the absence of NF-kappaB and Sp1 binding elements.
    Pöhlmann S; Flöss S; Ilyinskii PO; Stamminger T; Kirchhoff F
    J Virol; 1998 Jul; 72(7):5589-98. PubMed ID: 9621017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient transcription and replication of simian immunodeficiency virus in the absence of NF-kappaB and Sp1 binding elements.
    Ilyinskii PO; Desrosiers RC
    J Virol; 1996 May; 70(5):3118-26. PubMed ID: 8627791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cis-acting elements in the U3 region of a simian immunodeficiency virus.
    Renjifo B; Speck NA; Winandy S; Hopkins N; Li Y
    J Virol; 1990 Jun; 64(6):3130-4. PubMed ID: 2335831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simian immunodeficiency viruses containing mutations in the long terminal repeat NF-kappa B or Sp1 binding sites replicate efficiently in T cells and PHA-stimulated PBMCs.
    Zhang J; Novembre F; Rabson AB
    Virus Res; 1997 Jun; 49(2):205-13. PubMed ID: 9213395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced responsiveness to nuclear factor kappa B contributes to the unique phenotype of simian immunodeficiency virus variant SIVsmmPBj14.
    Dollard SC; Gummuluru S; Tsang S; Fultz PN; Dewhurst S
    J Virol; 1994 Dec; 68(12):7800-9. PubMed ID: 7966569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extra mouse mammary tumor proviruses in DBA/2 mouse lymphomas acquire a selective advantage in lymphocytes by alteration in the U3 region of the long terminal repeat.
    Yanagawa S; Murakami A; Tanaka H
    J Virol; 1990 Jun; 64(6):2474-83. PubMed ID: 2159524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of endogenous feline leukemia virus long terminal repeats and adjoining regions.
    Berry BT; Ghosh AK; Kumar DV; Spodick DA; Roy-Burman P
    J Virol; 1988 Oct; 62(10):3631-41. PubMed ID: 2843665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional initiation and postinitiation effects of murine leukemia virus long terminal repeat R-region sequences.
    Cupelli LA; Lenz J
    J Virol; 1991 Dec; 65(12):6961-8. PubMed ID: 1658385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of upstream U3 sequences in the pathogenesis of simian immunodeficiency virus-induced AIDS in rhesus monkeys.
    Ilyinskii PO; Daniel MD; Simon MA; Lackner AA; Desrosiers RC
    J Virol; 1994 Sep; 68(9):5933-44. PubMed ID: 7914551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear protein binding to the 5' enhancer region of the intracisternal A particle long terminal repeat.
    Zierler M; Christy RJ; Huang RC
    J Biol Chem; 1992 Oct; 267(29):21200-6. PubMed ID: 1400431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of long terminal repeats derived from four strains of simian immunodeficiency virus SIVAGM in relation to other primate lentiviruses.
    Sakuragi J; Fukasawa M; Shibata R; Sakai H; Kawamura M; Akari H; Kiyomasu T; Ishimoto A; Hayami M; Adachi A
    Virology; 1991 Nov; 185(1):455-9. PubMed ID: 1656599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic activation of simian immunodeficiency virus and human immunodeficiency virus type 1 transcription by retinoic acid and phorbol ester through an NF-kappa B-independent mechanism.
    Maciaszek JW; Talmage DA; Viglianti GA
    J Virol; 1994 Oct; 68(10):6598-604. PubMed ID: 8083995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear factors that bind two regions important to transcriptional activity of the simian immunodeficiency virus long terminal repeat.
    Winandy S; Renjifo B; Li Y; Hopkins N
    J Virol; 1992 Sep; 66(9):5216-23. PubMed ID: 1501272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide substitutions in the long terminal repeat are not required for development of neurovirulence by simian immunodeficiency virus strain mac.
    Stephens EB; Sahni M; Leung K; Raghavan R; Joag SV; Narayan O
    J Gen Virol; 1998 May; 79 ( Pt 5)():1089-100. PubMed ID: 9603323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis- and trans-regulation of feline immunodeficiency virus: identification of functional binding sites in the long terminal repeat.
    Thompson FJ; Elder J; Neil JC
    J Gen Virol; 1994 Mar; 75 ( Pt 3)():545-54. PubMed ID: 8126451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse mammary tumor virus proviruses in T-cell lymphomas lack a negative regulatory element in the long terminal repeat.
    Hsu CL; Fabritius C; Dudley J
    J Virol; 1988 Dec; 62(12):4644-52. PubMed ID: 2846876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human immunodeficiency virus type 1 long terminal repeat quasispecies differ in basal transcription and nuclear factor recruitment in human glial cells and lymphocytes.
    Krebs FC; Mehrens D; Pomeroy S; Goodenow MM; Wigdahl B
    J Biomed Sci; 1998; 5(1):31-44. PubMed ID: 9570512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.