These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
803 related articles for article (PubMed ID: 19852441)
1. Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Chen YY; Chang HT; Shiang YC; Hung YL; Chiang CK; Huang CC Anal Chem; 2009 Nov; 81(22):9433-9. PubMed ID: 19852441 [TBL] [Abstract][Full Text] [Related]
2. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Hung YL; Hsiung TM; Chen YY; Huang CC Talanta; 2010 Jul; 82(2):516-22. PubMed ID: 20602929 [TBL] [Abstract][Full Text] [Related]
3. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. Lou T; Chen L; Chen Z; Wang Y; Chen L; Li J ACS Appl Mater Interfaces; 2011 Nov; 3(11):4215-20. PubMed ID: 21970438 [TBL] [Abstract][Full Text] [Related]
4. Colorimetric assay of lead ions in biological samples using a nanogold-based membrane. Lee YF; Huang CC ACS Appl Mater Interfaces; 2011 Jul; 3(7):2747-54. PubMed ID: 21699213 [TBL] [Abstract][Full Text] [Related]
5. Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Li CL; Huang CC; Chen WH; Chiang CK; Chang HT Analyst; 2012 Nov; 137(22):5222-8. PubMed ID: 23032966 [TBL] [Abstract][Full Text] [Related]
6. The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles. Zhang Y; Leng Y; Miao L; Xin J; Wu A Dalton Trans; 2013 Apr; 42(15):5485-90. PubMed ID: 23426019 [TBL] [Abstract][Full Text] [Related]
7. Visual detection of copper(II) ions in blood samples by controlling the leaching of protein-capped gold nanoparticles. Lee YF; Deng TW; Chiu WJ; Wei TY; Roy P; Huang CC Analyst; 2012 Apr; 137(8):1800-6. PubMed ID: 22378024 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. Wu YS; Huang FF; Lin YW ACS Appl Mater Interfaces; 2013 Feb; 5(4):1503-9. PubMed ID: 23369297 [TBL] [Abstract][Full Text] [Related]
9. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Liu CW; Huang CC; Chang HT Langmuir; 2008 Aug; 24(15):8346-50. PubMed ID: 18582003 [TBL] [Abstract][Full Text] [Related]
10. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. Fu X; Lou T; Chen Z; Lin M; Feng W; Chen L ACS Appl Mater Interfaces; 2012 Feb; 4(2):1080-6. PubMed ID: 22264012 [TBL] [Abstract][Full Text] [Related]
11. Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions. Wang L; Li T; Du Y; Chen C; Li B; Zhou M; Dong S Biosens Bioelectron; 2010 Aug; 25(12):2622-6. PubMed ID: 20547052 [TBL] [Abstract][Full Text] [Related]
12. Detection of arsenic(III) through pulsed laser-induced desorption/ionization of gold nanoparticles on cellulose membranes. Weng CI; Cang JS; Chang JY; Hsiung TM; Unnikrishnan B; Hung YL; Tseng YT; Li YJ; Shen YW; Huang CC Anal Chem; 2014 Mar; 86(6):3167-73. PubMed ID: 24552451 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Zhu Z; Su Y; Li J; Li D; Zhang J; Song S; Zhao Y; Li G; Fan C Anal Chem; 2009 Sep; 81(18):7660-6. PubMed ID: 19691296 [TBL] [Abstract][Full Text] [Related]
14. Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Lien CW; Tseng YT; Huang CC; Chang HT Anal Chem; 2014 Feb; 86(4):2065-72. PubMed ID: 24451013 [TBL] [Abstract][Full Text] [Related]
15. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film. Zhu A; Luo Y; Tian Y Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788 [TBL] [Abstract][Full Text] [Related]
16. Detection of aminothiols through surface-assisted laser desorption/ionization mass spectrometry using mixed gold nanoparticles. Chiang NC; Chiang CK; Lin ZH; Chiu TC; Chang HT Rapid Commun Mass Spectrom; 2009 Oct; 23(19):3063-8. PubMed ID: 19705381 [TBL] [Abstract][Full Text] [Related]
17. Cation-assisted laser desorption/ionization for matrix-free surface mass spectrometry of alkanethiolate self-assembled monolayers on gold substrates and nanoparticles. Ha TK; Lee TG; Song NW; Moon DW; Han SY Anal Chem; 2008 Nov; 80(22):8526-31. PubMed ID: 18847282 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe. Cao Q; Zhao H; He Y; Li X; Zeng L; Ding N; Wang J; Yang J; Wang G Biosens Bioelectron; 2010 Aug; 25(12):2680-5. PubMed ID: 20510598 [TBL] [Abstract][Full Text] [Related]
19. Exploring the interactions between gold nanoparticles and analytes through surface-assisted laser desorption/ionization mass spectrometry. Lin YW; Chen WT; Chang HT Rapid Commun Mass Spectrom; 2010 Apr; 24(7):933-8. PubMed ID: 20209668 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Huang KW; Yu CJ; Tseng WL Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]