BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19852484)

  • 21. Characterization of a vanadate-based transition-state-analogue complex of phosphoglucomutase by kinetic and equilibrium binding studies. Mechanistic implications.
    Ray WJ; Puvathingal JM
    Biochemistry; 1990 Mar; 29(11):2790-801. PubMed ID: 2140699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comment on "The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction".
    Blackburn GM; Williams NH; Gamblin SJ; Smerdon SJ
    Science; 2003 Aug; 301(5637):1184; author reply 1184. PubMed ID: 12947182
    [No Abstract]   [Full Text] [Related]  

  • 23. MgF
    McCormick NE; Forget SM; Syvitski RT; Jakeman DL
    Biochem Cell Biol; 2017 Apr; 95(2):295-303. PubMed ID: 27991832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-energy intermediate or stable transition state analogue: theoretical perspective of the active site and mechanism of beta-phosphoglucomutase.
    Webster CE
    J Am Chem Soc; 2004 Jun; 126(22):6840-1. PubMed ID: 15174833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification, separation and characterization of phosphoglucomutase and phosphomannomutase from maize leaves.
    Popova TN; Matasova LV; Lapot'ko AA
    Biochem Mol Biol Int; 1998 Oct; 46(3):461-70. PubMed ID: 9818085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism-based inactivation of rabbit muscle phosphoglucomutase by nojirimycin 6-phosphate.
    Kim SC; Raushel FM
    Biochemistry; 1988 Sep; 27(19):7328-32. PubMed ID: 2974722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase.
    Lee Y; Villar MT; Artigues A; Beamer LJ
    J Biol Chem; 2014 Feb; 289(8):4674-82. PubMed ID: 24403075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical study of magnesium fluoride in aqueous solution.
    Shibata N; Sato H; Sakaki S; Sugita Y
    J Phys Chem B; 2011 Sep; 115(35):10553-9. PubMed ID: 21848290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 19F NMR investigations of the catalytic mechanism of phosphoglucomutase using fluorinated substrates and inhibitors.
    Percival MD; Withers SG
    Biochemistry; 1992 Jan; 31(2):505-12. PubMed ID: 1531026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple Ligand-Bound States of a Phosphohexomutase Revealed by Principal Component Analysis of NMR Peak Shifts.
    Xu J; Sarma AVS; Wei Y; Beamer LJ; Van Doren SR
    Sci Rep; 2017 Jul; 7(1):5343. PubMed ID: 28706231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical and structural characterization reveals Rv3400 codes for β-phosphoglucomutase in Mycobacterium tuberculosis.
    Singh L; Karthikeyan S; Thakur KG
    Protein Sci; 2024 Apr; 33(4):e4943. PubMed ID: 38501428
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Cruz-Navarrete FA; Baxter NJ; Wood HP; Hounslow AM; Waltho JP
    Biomol NMR Assign; 2019 Oct; 13(2):349-356. PubMed ID: 31396843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure analysis of the exocytosis-sensitive phosphoprotein, pp63/parafusin (phosphoglucomutase), from Paramecium reveals significant conformational variability.
    Müller S; Diederichs K; Breed J; Kissmehl R; Hauser K; Plattner H; Welte W
    J Mol Biol; 2002 Jan; 315(2):141-53. PubMed ID: 11779235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamics and mechanism of the PO3 transfer process in the phosphoglucomutase reaction.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):3993-4006. PubMed ID: 963018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis.
    Bao ZQ; Jacobsen DM; Young MA
    Structure; 2011 May; 19(5):675-90. PubMed ID: 21565702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near attack conformers dominate β-phosphoglucomutase complexes where geometry and charge distribution reflect those of substrate.
    Griffin JL; Bowler MW; Baxter NJ; Leigh KN; Dannatt HR; Hounslow AM; Blackburn GM; Webster CE; Cliff MJ; Waltho JP
    Proc Natl Acad Sci U S A; 2012 May; 109(18):6910-5. PubMed ID: 22505741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystallization and preliminary X-ray diffraction studies of beta-phosphoglucomutase from Lactococcus lactus.
    Lahiri SD; Zhang G; Radstrom P; Dunaway-Mariano D; Allen KN
    Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):324-6. PubMed ID: 11807265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme.
    Regni C; Schramm AM; Beamer LJ
    J Biol Chem; 2006 Jun; 281(22):15564-71. PubMed ID: 16595672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of Substrate Recognition and Catalysis of the Haloalkanoic Acid Dehalogenase Family Member α-Phosphoglucomutase.
    Zhang C; Allen KN; Dunaway-Mariano D
    Biochemistry; 2018 Jul; 57(30):4504-4517. PubMed ID: 29952545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of vibrational frequencies of critical bonds in ground-state complexes and in a vanadate-based transition-state analog complex of muscle phosphoglucomutase. Mechanistic implications.
    Deng H; Ray WJ; Burgner JW; Callender R
    Biochemistry; 1993 Dec; 32(48):12984-92. PubMed ID: 8241152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.