These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19853021)

  • 21. Auditory cortical receptive fields: stable entities with plastic abilities.
    Elhilali M; Fritz JB; Chi TS; Shamma SA
    J Neurosci; 2007 Sep; 27(39):10372-82. PubMed ID: 17898209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional congruity in local auditory cortical microcircuits.
    Atencio CA; Schreiner CE
    Neuroscience; 2016 Mar; 316():402-19. PubMed ID: 26768399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.
    Poon PW; Yu PP
    Neurosci Lett; 2000 Jul; 289(1):9-12. PubMed ID: 10899396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrotemporal contrast kernels for neurons in primary auditory cortex.
    Rabinowitz NC; Willmore BD; Schnupp JW; King AJ
    J Neurosci; 2012 Aug; 32(33):11271-84. PubMed ID: 22895711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
    Qiu A; Schreiner CE; EscabĂ­ MA
    J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.
    Willmore BD; Schoppe O; King AJ; Schnupp JW; Harper NS
    J Neurosci; 2016 Jan; 36(2):280-9. PubMed ID: 26758822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear cross-frequency interactions in primary auditory cortex spectrotemporal receptive fields: a Wiener-Volterra analysis.
    Pienkowski M; Eggermont JJ
    J Comput Neurosci; 2010 Apr; 28(2):285-303. PubMed ID: 20072806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchrony, connectivity, and functional similarity in auditory midbrain local circuits.
    Atencio CA; Shen V; Schreiner CE
    Neuroscience; 2016 Oct; 335():30-53. PubMed ID: 27544405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulus dependent transformations between synaptic and spiking receptive fields in auditory cortex.
    Kim KX; Atencio CA; Schreiner CE
    Nat Commun; 2020 Feb; 11(1):1102. PubMed ID: 32107370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lagged cells in the inferior colliculus of the awake ferret.
    Shechter B; Marvit P; Depireux DA
    Eur J Neurosci; 2010 Jan; 31(1):42-8. PubMed ID: 20092554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cooperative nonlinearities in auditory cortical neurons.
    Atencio CA; Sharpee TO; Schreiner CE
    Neuron; 2008 Jun; 58(6):956-66. PubMed ID: 18579084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of spectro-temporal tuning in primary auditory cortex of the awake ferret.
    Shechter B; Dobbins HD; Marvit P; Depireux DA
    Hear Res; 2009 Oct; 256(1-2):118-30. PubMed ID: 19619629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brief sounds evoke prolonged responses in anesthetized ferret auditory cortex.
    Campbell RA; Schulz AL; King AJ; Schnupp JW
    J Neurophysiol; 2010 May; 103(5):2783-93. PubMed ID: 20220077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved stimulus representation by short interspike intervals in primary auditory cortex.
    Shih JY; Atencio CA; Schreiner CE
    J Neurophysiol; 2011 Apr; 105(4):1908-17. PubMed ID: 21307320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks.
    Fritz JB; Elhilali M; Shamma SA
    J Neurosci; 2005 Aug; 25(33):7623-35. PubMed ID: 16107649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
    Calabrese A; Schumacher JW; Schneider DM; Paninski L; Woolley SM
    PLoS One; 2011 Jan; 6(1):e16104. PubMed ID: 21264310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subset of thin spike cortical neurons preserve the peripheral encoding of stimulus onsets.
    Lin FG; Liu RC
    J Neurophysiol; 2010 Dec; 104(6):3588-99. PubMed ID: 20943946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency-modulation encoding in the primary auditory cortex of the awake owl monkey.
    Atencio CA; Blake DT; Strata F; Cheung SW; Merzenich MM; Schreiner CE
    J Neurophysiol; 2007 Oct; 98(4):2182-95. PubMed ID: 17699695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex.
    Valentine PA; Eggermont JJ
    Hear Res; 2004 Oct; 196(1-2):119-33. PubMed ID: 15464309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.