BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19853274)

  • 1. Advanced oxidation and reduction process chemistry of methyl tert-butyl ether (MTBE) reaction intermediates in aqueous solution: 2-methoxy-2-methyl-propanal, 2-methoxy-2-methyl-propanol, and 2-methoxy-2-methyl-propanoic acid.
    Mezyk SP; Hardison DR; Song W; O'Shea KE; Bartels DM; Cooper WJ
    Chemosphere; 2009 Nov; 77(10):1352-7. PubMed ID: 19853274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent.
    Xu XR; Zhao ZY; Li XY; Gu JD
    Chemosphere; 2004 Apr; 55(1):73-9. PubMed ID: 14720549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation chemistry of methyl tert-butyl ether in aqueous solution.
    Mezyk SP; Jones J; Cooper WJ; Tobien T; Nickelsen MG; Adams JW; O'Shea KE; Bartels DM; Wishart JF; Tornatore PM; Newman KS; Gregoire K; Weidman DJ
    Environ Sci Technol; 2004 Jul; 38(14):3994-4001. PubMed ID: 15298211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent.
    Burbano AA; Dionysiou DD; Suidan MT; Richardson TL
    Water Res; 2005 Jan; 39(1):107-18. PubMed ID: 15607170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface.
    Schmidt TC; Schirmer M; Weiss H; Haderlein SB
    J Contam Hydrol; 2004 Jun; 70(3-4):173-203. PubMed ID: 15134874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes.
    Jeong J; Song W; Cooper WJ; Jung J; Greaves J
    Chemosphere; 2010 Jan; 78(5):533-40. PubMed ID: 20022625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions.
    Cooper WJ; Cramer CJ; Martin NH; Mezyk SP; O'Shea KE; von Sonntag C
    Chem Rev; 2009 Mar; 109(3):1302-45. PubMed ID: 19166337
    [No Abstract]   [Full Text] [Related]  

  • 8. Fenton's oxidation of MTBE with zero-valent iron.
    Bergendahl JA; Thies TP
    Water Res; 2004 Jan; 38(2):327-34. PubMed ID: 14675644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of inorganic ions on MTBE degradation by Fenton's reagent.
    Siedlecka EM; Wieckowska A; Stepnowski P
    J Hazard Mater; 2007 Aug; 147(1-2):497-502. PubMed ID: 17383092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S; Huling SG; Ko S
    Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-radical-induced oxidative and reductive degradation of sulfa drugs in water: absolute kinetics and efficiencies of hydroxyl radical and hydrated electron reactions.
    Mezyk SP; Neubauer TJ; Cooper WJ; Peller JR
    J Phys Chem A; 2007 Sep; 111(37):9019-24. PubMed ID: 17715905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent.
    Burbano AA; Dionysiou DD; Suidan MT
    Water Res; 2008 Jun; 42(12):3225-39. PubMed ID: 18468654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation.
    Acero JL; Haderlein SB; Schmidt TC; Suter MJ; von Gunten U
    Environ Sci Technol; 2001 Nov; 35(21):4252-9. PubMed ID: 11718338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic degradation of methyl tert-butyl ether in the gas-phase: a kinetic study.
    Boulamanti AK; Philippopoulos CJ
    J Hazard Mater; 2008 Dec; 160(1):83-7. PubMed ID: 18395338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical destruction of MTBE using Fenton's reagent: effect of ferrous iron/hydrogen peroxide ratio.
    Burbano A; Dionysiou D; Suidan M; Richardson T
    Water Sci Technol; 2003; 47(9):165-71. PubMed ID: 12830956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of methyl tertiary-butyl ether (MTBE) by anodic Fenton treatment.
    Hong S; Zhang H; Duttweiler CM; Lemley AT
    J Hazard Mater; 2007 Jun; 144(1-2):29-40. PubMed ID: 17254704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic oxidation of methyl tert-butyl ether (MTBE) in aqueous solution at a nickel electrode.
    Wu TN
    Chemosphere; 2007 Sep; 69(2):271-8. PubMed ID: 17553546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic considerations for the degradation of methyl tert-butyl ether (MTBE) by sonolysis: effect of argon vs. oxygen saturated solutions.
    Kim DK; O'Shea KE; Cooper WJ
    Ultrason Sonochem; 2012 Jul; 19(4):959-68. PubMed ID: 22227553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process.
    Xu XR; Li HB; Gu JD
    Chemosphere; 2006 Apr; 63(2):254-60. PubMed ID: 16169572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of atrazine in aqueous medium by electrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study.
    Balci B; Oturan N; Cherrier R; Oturan MA
    Water Res; 2009 Apr; 43(7):1924-34. PubMed ID: 19249809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.