BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19853294)

  • 1. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering.
    Tian H; Bharadwaj S; Liu Y; Ma H; Ma PX; Atala A; Zhang Y
    Biomaterials; 2010 Feb; 31(5):870-7. PubMed ID: 19853294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering.
    Tian H; Bharadwaj S; Liu Y; Ma PX; Atala A; Zhang Y
    Tissue Eng Part A; 2010 May; 16(5):1769-79. PubMed ID: 20020816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and myogenic differentiation of mesenchymal stem cells for urologic tissue engineering.
    Wu R; Liu G; Bharadwaj S; Zhang Y
    Methods Mol Biol; 2013; 1001():65-80. PubMed ID: 23494421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation.
    Park J; Bauer S; Schlegel KA; Neukam FW; von der Mark K; Schmuki P
    Small; 2009 Mar; 5(6):666-71. PubMed ID: 19235196
    [No Abstract]   [Full Text] [Related]  

  • 6. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering.
    Ahvaz HH; Mobasheri H; Bakhshandeh B; Shakhssalim N; Naji M; Dodel M; Soleimani M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4736-43. PubMed ID: 23901498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved bladder smooth muscle cell differentiation of the mesenchymal stem cells when grown on electrospun polyacrylonitrile/polyethylene oxide nanofibrous scaffold.
    Fakhrieh M; Darvish M; Ardeshirylajimi A; Taheri M; Omrani MD
    J Cell Biochem; 2019 Sep; 120(9):15814-15822. PubMed ID: 31069835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses.
    François S; Chakfé N; Durand B; Laroche G
    Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.
    Castro NJ; O'Brien J; Zhang LG
    Nanoscale; 2015 Sep; 7(33):14010-22. PubMed ID: 26234364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun bioscaffolds that mimic the topology of extracellular matrix.
    Han D; Gouma PI
    Nanomedicine; 2006 Mar; 2(1):37-41. PubMed ID: 17292114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells.
    Uygun BE; Stojsih SE; Matthew HW
    Tissue Eng Part A; 2009 Nov; 15(11):3499-512. PubMed ID: 19456238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly(l-lactic acid) scaffold promote bladder regeneration in a canine model.
    Shakhssalim N; Soleimani M; Dehghan MM; Rasouli J; Taghizadeh-Jahed M; Torbati PM; Naji M
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():877-884. PubMed ID: 28415542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly(lactide-co-glycolide) nanofibrous structure.
    Mirzaei A; Saburi E; Islami M; Ardeshirylajimi A; Omrani MD; Taheri M; Moghadam AS; Ghafouri-Fard S
    Gene; 2019 Apr; 694():26-32. PubMed ID: 30735717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold.
    Shakhssalim N; Rasouli J; Moghadasali R; Aghdas FS; Naji M; Soleimani M
    Int J Artif Organs; 2013 Feb; 36(2):113-20. PubMed ID: 23280074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.