These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 19853423)
1. PLGA particle production for water-soluble drug encapsulation: degradation and release behaviour. Gasparini G; Holdich RG; Kosvintsev SR Colloids Surf B Biointerfaces; 2010 Feb; 75(2):557-64. PubMed ID: 19853423 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of PLGA particles for subcutaneous controlled drug release by membrane emulsification. Gasparini G; Kosvintsev SR; Stillwell MT; Holdich RG Colloids Surf B Biointerfaces; 2008 Feb; 61(2):199-207. PubMed ID: 17919891 [TBL] [Abstract][Full Text] [Related]
3. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Klose D; Siepmann F; Elkharraz K; Krenzlin S; Siepmann J Int J Pharm; 2006 May; 314(2):198-206. PubMed ID: 16504431 [TBL] [Abstract][Full Text] [Related]
4. Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Mao S; Shi Y; Li L; Xu J; Schaper A; Kissel T Eur J Pharm Biopharm; 2008 Feb; 68(2):214-23. PubMed ID: 17651954 [TBL] [Abstract][Full Text] [Related]
6. Bupivacaine-loaded biodegradable poly(lactic-co-glycolic) acid microspheres I. Optimization of the drug incorporation into the polymer matrix and modelling of drug release. Zhang H; Lu Y; Zhang G; Gao S; Sun D; Zhong Y Int J Pharm; 2008 Mar; 351(1-2):244-9. PubMed ID: 18024022 [TBL] [Abstract][Full Text] [Related]
7. Preparation of porous PLGA microspheres with thermoreversible gel to modulate drug release profile of water-soluble drug: bleomycin sulphate. Chaudhari KR; Shah N; Patel H; Murthy R J Microencapsul; 2010; 27(4):303-13. PubMed ID: 20128747 [TBL] [Abstract][Full Text] [Related]
8. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Choi SH; Park TG Int J Pharm; 2006 Mar; 311(1-2):223-8. PubMed ID: 16423477 [TBL] [Abstract][Full Text] [Related]
9. A novel preparation method for PLGA microspheres using non-halogenated solvents. Matsumoto A; Kitazawa T; Murata J; Horikiri Y; Yamahara H J Control Release; 2008 Aug; 129(3):223-7. PubMed ID: 18562036 [TBL] [Abstract][Full Text] [Related]
10. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles. Klose D; Delplace C; Siepmann J Int J Pharm; 2011 Feb; 404(1-2):75-82. PubMed ID: 21056644 [TBL] [Abstract][Full Text] [Related]
11. Properties of poly(lactic-co-glycolic acid) nanospheres containing protease inhibitors: camostat mesilate and nafamostat mesilate. Yin J; Noda Y; Yotsuyanagi T Int J Pharm; 2006 May; 314(1):46-55. PubMed ID: 16551494 [TBL] [Abstract][Full Text] [Related]
12. How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Siepmann J; Elkharraz K; Siepmann F; Klose D Biomacromolecules; 2005; 6(4):2312-9. PubMed ID: 16004477 [TBL] [Abstract][Full Text] [Related]
13. Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory. Faisant N; Akiki J; Siepmann F; Benoit JP; Siepmann J Int J Pharm; 2006 May; 314(2):189-97. PubMed ID: 16510257 [TBL] [Abstract][Full Text] [Related]
14. Quantifying drug release from PLGA nanoparticulates. Corrigan OI; Li X Eur J Pharm Sci; 2009 Jun; 37(3-4):477-85. PubMed ID: 19379812 [TBL] [Abstract][Full Text] [Related]
15. Nanostructured microspheres produced by supercritical fluid extraction of emulsions. Della Porta G; Reverchon E Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122 [TBL] [Abstract][Full Text] [Related]
16. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems. Rodríguez-Cruz IM; Domínguez-Delgado CL; Escobar-Chávez JJ; Leyva-Gómez G; Ganem-Quintanar A; Quintanar-Guerrero D Int J Pharm; 2009 Apr; 371(1-2):177-81. PubMed ID: 19150491 [TBL] [Abstract][Full Text] [Related]
17. Effect of salts on lysozyme stability at the water-oil interface and upon encapsulation in poly(lactic-co-glycolic) acid microspheres. Pérez C; Griebenow K Biotechnol Bioeng; 2003 Jun; 82(7):825-32. PubMed ID: 12701149 [TBL] [Abstract][Full Text] [Related]
18. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287 [TBL] [Abstract][Full Text] [Related]
19. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. Mundargi RC; Babu VR; Rangaswamy V; Patel P; Aminabhavi TM J Control Release; 2008 Feb; 125(3):193-209. PubMed ID: 18083265 [TBL] [Abstract][Full Text] [Related]
20. PLGA microparticle-embedded thermosensitive hydrogels for sustained release of hydrophobic drugs. Joung YK; Choi JH; Park KM; Park KD Biomed Mater; 2007 Dec; 2(4):269-73. PubMed ID: 18458485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]