These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 19853630)
21. A reconfigurable neural signal processor (NSP) for brain machine interfaces. Darmanjian S; Cieslewski G; Morrison S; Dang B; Gugel K; Principe J Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2502-5. PubMed ID: 17946962 [TBL] [Abstract][Full Text] [Related]
22. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study. Kamnik R; Bajd T Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459 [TBL] [Abstract][Full Text] [Related]
23. [Neural interface systems: the future is (almost) here]. Masse NY; Jarosiewicz B Med Sci (Paris); 2012 Nov; 28(11):932-4. PubMed ID: 23171895 [No Abstract] [Full Text] [Related]
24. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG. Akce A; Johnson M; Dantsker O; Bretl T IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):306-18. PubMed ID: 23268384 [TBL] [Abstract][Full Text] [Related]
25. Bridging the brain to the world: a perspective on neural interface systems. Donoghue JP Neuron; 2008 Nov; 60(3):511-21. PubMed ID: 18995827 [TBL] [Abstract][Full Text] [Related]
26. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence. Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856 [TBL] [Abstract][Full Text] [Related]
27. Space robotics in the '90s. Ruoff CF Aerosp Am; 1989 Aug; 27(8):38-41, 46. PubMed ID: 11540489 [TBL] [Abstract][Full Text] [Related]
28. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271 [TBL] [Abstract][Full Text] [Related]
29. xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. Rivet B; Souloumiac A; Attina V; Gibert G IEEE Trans Biomed Eng; 2009 Aug; 56(8):2035-43. PubMed ID: 19174332 [TBL] [Abstract][Full Text] [Related]
30. A review on directional information in neural signals for brain-machine interfaces. Waldert S; Pistohl T; Braun C; Ball T; Aertsen A; Mehring C J Physiol Paris; 2009; 103(3-5):244-54. PubMed ID: 19665554 [TBL] [Abstract][Full Text] [Related]
31. CT-integrated robot for interventional procedures: preliminary experiment and computer-human interfaces. Yanof J; Haaga J; Klahr P; Bauer C; Nakamoto D; Chaturvedi A; Bruce R Comput Aided Surg; 2001; 6(6):352-9. PubMed ID: 11954066 [TBL] [Abstract][Full Text] [Related]
32. A two-class self-paced BCI to control a robot in four directions. Ron-Angevin R; Velasco-Alvarez F; Sancha-Ros S; da Silva-Sauer L IEEE Int Conf Rehabil Robot; 2011; 2011():5975486. PubMed ID: 22275683 [TBL] [Abstract][Full Text] [Related]
33. Brain-machine interface: the future is now. Jain N Natl Med J India; 2010; 23(6):321-3. PubMed ID: 21561040 [No Abstract] [Full Text] [Related]
34. Matching brain-machine interface performance to space applications. Citi L; Tonet O; Marinelli M Int Rev Neurobiol; 2009; 86():199-212. PubMed ID: 19608001 [TBL] [Abstract][Full Text] [Related]
35. Usability engineering for augmented reality: employing user-based studies to inform design. Gabbard JL; Swan JE IEEE Trans Vis Comput Graph; 2008; 14(3):513-25. PubMed ID: 18369261 [TBL] [Abstract][Full Text] [Related]
36. Brain interface research for asynchronous control applications. Borisoff JF; Mason SG; Birch GE IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):160-4. PubMed ID: 16792283 [TBL] [Abstract][Full Text] [Related]
37. Use of Magnetorheological fluid in a force feedback glove. Winter SH; Bouzit M IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):2-8. PubMed ID: 17436869 [TBL] [Abstract][Full Text] [Related]
38. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures. Cruces RA; Wahrburg J Int J Med Robot; 2007 Dec; 3(4):316-22. PubMed ID: 17948919 [TBL] [Abstract][Full Text] [Related]
39. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. Trejo LJ; Rosipal R; Matthews B IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300 [TBL] [Abstract][Full Text] [Related]
40. Writing through a robot: a proof of concept for a brain-machine interface. Pérez-Marcos D; Buitrago JA; Velásquez FD Med Eng Phys; 2011 Dec; 33(10):1314-7. PubMed ID: 21741290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]