BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19854171)

  • 1. Cholesterol efflux stimulates metalloproteinase-mediated cleavage of occludin and release of extracellular membrane particles containing its C-terminal fragments.
    Casas E; Barron C; Francis SA; McCormack JM; McCarthy KM; Schneeberger EE; Lynch RD
    Exp Cell Res; 2010 Feb; 316(3):353-65. PubMed ID: 19854171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial electrical resistance.
    Francis SA; Kelly JM; McCormack J; Rogers RA; Lai J; Schneeberger EE; Lynch RD
    Eur J Cell Biol; 1999 Jul; 78(7):473-84. PubMed ID: 10472800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protamine-induced epithelial barrier disruption involves rearrangement of cytoskeleton and decreased tight junction-associated protein expression in cultured MDCK strains.
    Peixoto EB; Collares-Buzato CB
    Cell Struct Funct; 2005 Feb; 29(5-6):165-78. PubMed ID: 15840948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol depletion alters detergent-specific solubility profiles of selected tight junction proteins and the phosphorylation of occludin.
    Lynch RD; Francis SA; McCarthy KM; Casas E; Thiele C; Schneeberger EE
    Exp Cell Res; 2007 Jul; 313(12):2597-610. PubMed ID: 17574235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein.
    Balda MS; Whitney JA; Flores C; González S; Cereijido M; Matter K
    J Cell Biol; 1996 Aug; 134(4):1031-49. PubMed ID: 8769425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl-beta-cyclodextrin increases permeability of Caco-2 cell monolayers by displacing specific claudins from cholesterol rich domains associated with tight junctions.
    Lambert D; O'Neill CA; Padfield PJ
    Cell Physiol Biochem; 2007; 20(5):495-506. PubMed ID: 17762176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occludin is a functional component of the tight junction.
    McCarthy KM; Skare IB; Stankewich MC; Furuse M; Tsukita S; Rogers RA; Lynch RD; Schneeberger EE
    J Cell Sci; 1996 Sep; 109 ( Pt 9)():2287-98. PubMed ID: 8886979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tricellulin forms homomeric and heteromeric tight junctional complexes.
    Westphal JK; Dörfel MJ; Krug SM; Cording JD; Piontek J; Blasig IE; Tauber R; Fromm M; Huber O
    Cell Mol Life Sci; 2010 Jun; 67(12):2057-68. PubMed ID: 20213273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Displacement of tight junction proteins from detergent-resistant membrane domains by treatment with sodium caprate.
    Sugibayashi K; Onuki Y; Takayama K
    Eur J Pharm Sci; 2009 Feb; 36(2-3):246-53. PubMed ID: 19013238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption enhancement effect of acylcarnitines through changes in tight junction protein in Caco-2 cell monolayers.
    Doi N; Tomita M; Hayashi M
    Drug Metab Pharmacokinet; 2011; 26(2):162-70. PubMed ID: 21206134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function.
    Hopkins AM; Walsh SV; Verkade P; Boquet P; Nusrat A
    J Cell Sci; 2003 Feb; 116(Pt 4):725-42. PubMed ID: 12538773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells.
    Yu AS; McCarthy KM; Francis SA; McCormack JM; Lai J; Rogers RA; Lynch RD; Schneeberger EE
    Am J Physiol Cell Physiol; 2005 Jun; 288(6):C1231-41. PubMed ID: 15689410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of Caco-2 cell cholesterol disrupts barrier function by altering the detergent solubility and distribution of specific tight-junction proteins.
    Lambert D; O'Neill CA; Padfield PJ
    Biochem J; 2005 Apr; 387(Pt 2):553-60. PubMed ID: 15500448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight junction targeting and intracellular trafficking of occludin in polarized epithelial cells.
    Subramanian VS; Marchant JS; Ye D; Ma TY; Said HM
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1717-26. PubMed ID: 17855770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invasion of enteropathogenic Escherichia coli into host cells through epithelial tight junctions.
    Li Q; Zhang Q; Wang C; Li N; Li J
    FEBS J; 2008 Dec; 275(23):6022-32. PubMed ID: 19016848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis.
    Shen L; Turner JR
    Mol Biol Cell; 2005 Sep; 16(9):3919-36. PubMed ID: 15958494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of epithelial tight junctions is prevented by cyclic nucleotide-dependent protein kinase inhibitors.
    Klingler C; Kniesel U; Bamforth SD; Wolburg H; Engelhardt B; Risau W
    Histochem Cell Biol; 2000 May; 113(5):349-61. PubMed ID: 10883394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting.
    Matter K; Balda MS
    J Cell Sci; 1998 Feb; 111 ( Pt 4)():511-9. PubMed ID: 9443899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family.
    Steed E; Rodrigues NT; Balda MS; Matter K
    BMC Cell Biol; 2009 Dec; 10():95. PubMed ID: 20028514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caveolin binds independently to claudin-2 and occludin.
    Itallie CM; Anderson JM
    Ann N Y Acad Sci; 2012 Jun; 1257():103-7. PubMed ID: 22671595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.