These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19854176)

  • 21. Chromophore of sensory rhodopsin II from Halobacterium halobium.
    Scharf B; Hess B; Engelhard M
    Biochemistry; 1992 Dec; 31(49):12486-92. PubMed ID: 1463734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins.
    Shionoya T; Singh M; Mizuno M; Kandori H; Mizutani Y
    Biochemistry; 2021 Oct; 60(41):3050-3057. PubMed ID: 34601881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient approach to determine the pK(a) of the proton release complex in the photocycle of retinal proteins.
    Wu J; Ma D; Wang Y; Ming M; Balashov SP; Ding J
    J Phys Chem B; 2009 Apr; 113(13):4482-91. PubMed ID: 19281200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin.
    Shibata M; Kandori H
    Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton transfer reactions in the F86D and F86E mutants of pharaonis phoborhodopsin (sensory rhodopsin II).
    Iwamoto M; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2003 Mar; 42(10):2790-6. PubMed ID: 12627944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins.
    Furutani Y; Shibata M; Kandori H
    Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant.
    Shibata M; Ihara K; Kandori H
    Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FTIR spectroscopy of the O photointermediate in pharaonis phoborhodopsin.
    Furutani Y; Iwamoto M; Shimono K; Wada A; Ito M; Kamo N; Kandori H
    Biochemistry; 2004 May; 43(18):5204-12. PubMed ID: 15122886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton release and uptake of pharaonis phoborhodopsin (sensory rhodopsin II) reconstituted into phospholipids.
    Iwamoto M; Hasegawa C; Sudo Y; Shimono K; Araiso T; Kamo N
    Biochemistry; 2004 Mar; 43(11):3195-203. PubMed ID: 15023069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-containing hydrogen-bonding network in the active center of channelrhodopsin.
    Ito S; Kato HE; Taniguchi R; Iwata T; Nureki O; Kandori H
    J Am Chem Soc; 2014 Mar; 136(9):3475-82. PubMed ID: 24512107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance Raman spectroscopy of sensory rhodopsin II from Natronobacterium pharaonis.
    Gellini C; Lüttenberg B; Sydor J; Engelhard M; Hildebrandt P
    FEBS Lett; 2000 Apr; 472(2-3):263-6. PubMed ID: 10788623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K.
    Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP
    Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential.
    Saint Clair EC; Ogren JI; Mamaev S; Russano D; Kralj JM; Rothschild KJ
    J Phys Chem B; 2012 Dec; 116(50):14592-601. PubMed ID: 23189985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin's J and K intermediates.
    Shim S; Dasgupta J; Mathies RA
    J Am Chem Soc; 2009 Jun; 131(22):7592-7. PubMed ID: 19441850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational modes of the protonated Schiff base in pharaonis phoborhodopsin.
    Shimono K; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2003 Jul; 42(25):7801-6. PubMed ID: 12820889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses.
    Nagel G; Brauner M; Liewald JF; Adeishvili N; Bamberg E; Gottschalk A
    Curr Biol; 2005 Dec; 15(24):2279-84. PubMed ID: 16360690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate.
    Mei G; Mamaeva N; Ganapathy S; Wang P; DeGrip WJ; Rothschild KJ
    PLoS One; 2018; 13(12):e0209506. PubMed ID: 30586409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.