These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 19854218)

  • 21. Cutting edge: Phenotypic characterization and differentiation of human CD8+ T cells producing IL-17.
    Kondo T; Takata H; Matsuki F; Takiguchi M
    J Immunol; 2009 Feb; 182(4):1794-8. PubMed ID: 19201830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Markers of lymphocyte homing distinguish CD4 T cell subsets that turn over in response to HIV-1 infection in humans.
    Hengel RL; Jones BM; Kennedy MS; Hubbard MR; McDougal JS
    J Immunol; 1999 Sep; 163(6):3539-48. PubMed ID: 10477629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CD8 T cell effector maturation in HIV-1-infected children.
    Jordan KA; Furlan SN; Gonzalez VD; Karlsson AC; Quigley MF; Deeks SG; Rosenberg MG; Nixon DF; Sandberg JK
    Virology; 2006 Mar; 347(1):117-26. PubMed ID: 16406047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets.
    Caccamo N; Meraviglia S; Ferlazzo V; Angelini D; Borsellino G; Poccia F; Battistini L; Dieli F; Salerno A
    Eur J Immunol; 2005 Jun; 35(6):1764-72. PubMed ID: 15915537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human B cells express a CD45 isoform that is similar to murine B220 and is downregulated with acquisition of the memory B-cell marker CD27.
    Bleesing JJ; Fleisher TA
    Cytometry B Clin Cytom; 2003 Jan; 51(1):1-8. PubMed ID: 12500291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Limited long-term naive CD4+ T cell reconstitution in patients experiencing viral load rebounds during HAART.
    Choremi-Papadopoulou H; Tsalimalma K; Dafni U; Dimitracopoulou A; Kordossis T
    J Med Virol; 2004 Jun; 73(2):235-43. PubMed ID: 15122798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CD38+CD8+ T-cells negatively correlate with CD4 central memory cells in virally suppressed HIV-1-infected individuals.
    Kolber MA
    AIDS; 2008 Oct; 22(15):1937-41. PubMed ID: 18784457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory syncytial virus-specific CD8+ memory T cell responses in elderly persons.
    de Bree GJ; Heidema J; van Leeuwen EM; van Bleek GM; Jonkers RE; Jansen HM; van Lier RA; Out TA
    J Infect Dis; 2005 May; 191(10):1710-8. PubMed ID: 15838799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CD27 expression on lymphocyte and sCD27 levels in children with asthma.
    Bozdogan G; Dogu F; Güloglu D; Yuksek M; Aytekin C; Ikinciogullari A
    Allergol Immunopathol (Madr); 2010; 38(6):327-32. PubMed ID: 20800938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual personality of memory T cells.
    Mackay CR
    Nature; 1999 Oct; 401(6754):659-60. PubMed ID: 10537102
    [No Abstract]   [Full Text] [Related]  

  • 31. CD27 and CD38 lymphocytes are detected in oral lichen planus lesions.
    Mattila R; Ahlfors E; Syrjänen S
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2011 Feb; 111(2):211-7. PubMed ID: 21237436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of lymphocyte subsets in HIV-infected, long-term nonprogressor, and healthy Asian children through 12 years of age.
    Ananworanich J; Apornpong T; Kosalaraksa P; Jaimulwong T; Hansudewechakul R; Pancharoen C; Bunupuradah T; Chandara M; Puthanakit T; Ngampiyasakul C; Wongsawat J; Kanjanavanit S; Luesomboon W; Klangsinsirikul P; Ngo-Giang-Huong N; Kerr SJ; Ubolyam S; Mengthaisong T; Gelman RS; Pattanapanyasat K; Saphonn V; Ruxrungtham K; Shearer WT;
    J Allergy Clin Immunol; 2010 Dec; 126(6):1294-301.e10. PubMed ID: 21134574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lymphocyte lifespan, immunological memory and retroviral infections.
    Michie CA; McLean A
    Immunol Today; 1993 May; 14(5):235. PubMed ID: 8517923
    [No Abstract]   [Full Text] [Related]  

  • 34. Immunophenotyping of T cell subpopulations in HIV disease.
    Chattopadhyay PK; Roederer M
    Curr Protoc Immunol; 2005 Mar; Chapter 12():Unit 12.12. PubMed ID: 18432939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interferon-gamma for counteracting T-cell activation.
    Schroecksnadel K; Fuchs D
    Trends Immunol; 2006 Sep; 27(9):398. PubMed ID: 16857428
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanisms underlying the increased susceptibility of aged mice to tuberculosis.
    Orme I
    Nutr Rev; 1995 Apr; 53(4 Pt 2):S35-8; discussion S38-40. PubMed ID: 7644152
    [No Abstract]   [Full Text] [Related]  

  • 37. Editorial: T cell memory, bone marrow, and aging: the good news.
    Effros RB
    J Leukoc Biol; 2012 Feb; 91(2):185-7. PubMed ID: 22293941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immune landscape of female reproductive tract and HIV susceptibility.
    Byrareddy SN
    EBioMedicine; 2021 Aug; 70():103497. PubMed ID: 34304049
    [No Abstract]   [Full Text] [Related]  

  • 39. 'Knock, knock'... Fashion Robin to the rescue.
    Weber R
    Dermatol Nurs; 2004 Oct; 16(5):455. PubMed ID: 15662733
    [No Abstract]   [Full Text] [Related]  

  • 40. HIV immune pathogenesis: an update from CROI.
    Laurence J
    AIDS Read; 2005 May; 15(5):208, 214. PubMed ID: 15900629
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.