BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19854275)

  • 1. Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging.
    Walter T; Held M; Neumann B; Hériché JK; Conrad C; Pepperkok R; Ellenberg J
    J Struct Biol; 2010 Apr; 170(1):1-9. PubMed ID: 19854275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput RNAi screening by time-lapse imaging of live human cells.
    Neumann B; Held M; Liebel U; Erfle H; Rogers P; Pepperkok R; Ellenberg J
    Nat Methods; 2006 May; 3(5):385-90. PubMed ID: 16628209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of automatic high-resolution light microscopy for cell-based screens.
    Paran Y; Lavelin I; Naffar-Abu-Amara S; Winograd-Katz S; Liron Y; Geiger B; Kam Z
    Methods Enzymol; 2006; 414():228-47. PubMed ID: 17110195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening.
    Li F; Zhou X; Ma J; Wong ST
    J Microsc; 2007 May; 226(Pt 2):121-32. PubMed ID: 17444941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-content siRNA screening.
    Krausz E
    Mol Biosyst; 2007 Apr; 3(4):232-40. PubMed ID: 17372651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects.
    Gunsalus KC; Yueh WC; MacMenamin P; Piano F
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D406-10. PubMed ID: 14681444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated classification of mitotic phenotypes of human cells using fluorescent proteins.
    Harder N; Eils R; Rohr K
    Methods Cell Biol; 2008; 85():539-54. PubMed ID: 18155478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From experimental setup to bioinformatics: an RNAi screening platform to identify host factors involved in HIV-1 replication.
    Börner K; Hermle J; Sommer C; Brown NP; Knapp B; Glass B; Kunkel J; Torralba G; Reymann J; Beil N; Beneke J; Pepperkok R; Schneider R; Ludwig T; Hausmann M; Hamprecht F; Erfle H; Kaderali L; Kräusslich HG; Lehmann MJ
    Biotechnol J; 2010 Jan; 5(1):39-49. PubMed ID: 20013946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics.
    Sugimoto A
    Differentiation; 2004 Mar; 72(2-3):81-91. PubMed ID: 15066188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DetecTiff: a novel image analysis routine for high-content screening microscopy.
    Gilbert DF; Meinhof T; Pepperkok R; Runz H
    J Biomol Screen; 2009 Sep; 14(8):944-55. PubMed ID: 19641223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput fluorescence microscopy for systems biology.
    Pepperkok R; Ellenberg J
    Nat Rev Mol Cell Biol; 2006 Sep; 7(9):690-6. PubMed ID: 16850035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data.
    Tseng GC
    Bioinformatics; 2007 Sep; 23(17):2247-55. PubMed ID: 17597097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical and computational framework for quantitative comparison and integration of large-scale gene expression data.
    Hart CE; Sharenbroich L; Bornstein BJ; Trout D; King B; Mjolsness E; Wold BJ
    Nucleic Acids Res; 2005; 33(8):2580-94. PubMed ID: 15886390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and characterization of a rock-cluster-based EST analysis pipeline.
    Zhu T; Zhou J; An Y; Zhou J; Li H; Xu G; Ma D
    Comput Biol Chem; 2006 Feb; 30(1):81-6. PubMed ID: 16321574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TLM-Converter: reorganization of long time-lapse microscopy datasets for downstream image analysis.
    Puah WC; Cheok LP; Biro M; Ng WT; Wasser M
    Biotechniques; 2011 Jul; 51(1):49-50, 52-3. PubMed ID: 21781053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets.
    Sims D; Bursteinas B; Gao Q; Zvelebil M; Baum B
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D479-83. PubMed ID: 16381916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning: an indispensable tool in bioinformatics.
    Inza I; Calvo B; Armañanzas R; Bengoetxea E; Larrañaga P; Lozano JA
    Methods Mol Biol; 2010; 593():25-48. PubMed ID: 19957143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning regulatory programs that accurately predict differential expression with MEDUSA.
    Kundaje A; Lianoglou S; Li X; Quigley D; Arias M; Wiggins CH; Zhang L; Leslie C
    Ann N Y Acad Sci; 2007 Dec; 1115():178-202. PubMed ID: 17934055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.