BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19854467)

  • 1. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1082-93. PubMed ID: 19853881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface.
    Liu Y; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Biomacromolecules; 2010 Aug; 11(8):2109-15. PubMed ID: 20690718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts.
    Kuznar ZA; Elimelech M
    Langmuir; 2005 Jan; 21(2):710-6. PubMed ID: 15641844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.
    Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD
    Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA.
    Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J
    Water Res; 2010 Feb; 44(4):1126-37. PubMed ID: 20116824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces: microscopic evidence for secondary minimum deposition in a radial stagnation point flow cell.
    Liu Y; Janjaroen D; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Langmuir; 2009 Feb; 25(3):1594-605. PubMed ID: 19133757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration.
    Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M
    Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and retention of Cryptosporidium parvum oocysts in sandy soils.
    SantamarĂ­a J; Brusseau ML; Araujo J; Orosz-Coghlan P; Blanford WJ; Gerba CP
    J Environ Qual; 2012; 41(4):1246-52. PubMed ID: 22751068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(6):1837-42. PubMed ID: 16570605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the interaction force between Cryptosporidium parvum oocysts and solid surfaces.
    Byrd TL; Walz JY
    Langmuir; 2007 Jul; 23(14):7475-83. PubMed ID: 17555335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium.
    Abudalo RA; Ryan JN; Harvey RW; Metge DW; Landkamer L
    Water Res; 2010 Feb; 44(4):1104-13. PubMed ID: 19853880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Straining, attachment, and detachment of cryptosporidium oocysts in saturated porous media.
    Bradford SA; Bettahar M
    J Environ Qual; 2005; 34(2):469-78. PubMed ID: 15758099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of Cryptosporidium parvum oocysts in a silicon micromodel.
    Liu Y; Zhang C; Hilpert M; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Environ Sci Technol; 2012 Feb; 46(3):1471-9. PubMed ID: 22229872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.