These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19854467)

  • 21. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts.
    Bradford SA; Kim H; Headd B; Torkzaban S
    Environ Sci Technol; 2016 Feb; 50(3):1295-303. PubMed ID: 26720840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vertical transport of Cryptosporidium parvum oocysts through sediments.
    Kim SB; Corapcioglu MY
    Environ Technol; 2002 Dec; 23(12):1435-46. PubMed ID: 12523514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of divalent cations on deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces.
    Janjaroen D; Liu Y; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Environ Sci Technol; 2010 Jun; 44(12):4519-24. PubMed ID: 20465262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of Cryptosporidium parvum oocysts in sandy soil: impact of length scale.
    Santamaría J; Quinonez-Diaz Mde J; Lemond L; Arnold RG; Quanrud D; Gerba C; Brusseau ML
    J Environ Monit; 2011 Dec; 13(12):3481-4. PubMed ID: 22027739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers.
    Ma H; Pazmino E; Johnson WP
    Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2004 Dec; 38(24):6839-45. PubMed ID: 15669347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody.
    Taguchi T; Arakaki A; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T
    Biotechnol Bioeng; 2007 Feb; 96(2):272-80. PubMed ID: 16917954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media.
    Pang L; Nowostawska U; Weaver L; Hoffman G; Karmacharya A; Skinner A; Karki N
    Environ Sci Technol; 2012 Nov; 46(21):11779-87. PubMed ID: 22978441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association of Cryptosporidium with bovine faecal particles and implications for risk reduction by settling within water supply reservoirs.
    Brookes JD; Davies CM; Hipsey MR; Antenucci JP
    J Water Health; 2006 Mar; 4(1):87-98. PubMed ID: 16604841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of ionic strength and soil characteristics on the behavior of Cryptosporidium oocysts in saturated porous media.
    Balthazard-Accou K; Fifi U; Agnamey P; Casimir JA; Brasseur P; Emmanuel E
    Chemosphere; 2014 May; 103():114-20. PubMed ID: 24359923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface plasmon resonance-based inhibition assay for real-time detection of Cryptosporidium parvum oocyst.
    Kang CD; Cao C; Lee J; Choi IS; Kim BW; Sim SJ
    Water Res; 2008 Mar; 42(6-7):1693-9. PubMed ID: 17988710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
    Luo X; Jedlicka S; Jellison K
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations.
    Johnson WP; Pazmino E; Ma H
    Water Res; 2010 Feb; 44(4):1158-69. PubMed ID: 20132959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of particle size on copper oxychloride transport through saturated sand columns.
    Paradelo M; Pérez-Rodríguez P; Arias-Estévez M; López-Periago JE
    J Agric Food Chem; 2010 Jun; 58(11):6870-5. PubMed ID: 20465213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oocysts of Cryptosporidium parvum and model sand surfaces in aqueous solutions: an atomic force microscope (AFM) study.
    Considine RF; Dixon DR; Drummond CJ
    Water Res; 2002 Aug; 36(14):3421-8. PubMed ID: 12230187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport and fate of Cryptosporidium parvum oocysts in intermittent sand filters.
    Logan AJ; Stevik TK; Siegrist RL; Rønn RM
    Water Res; 2001 Dec; 35(18):4359-69. PubMed ID: 11763038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms.
    Chen G; Liu X; Su C
    Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays.
    Lee Y; Gomez LL; McAuliffe IT; Tsang VC
    Lett Appl Microbiol; 2004; 39(2):156-62. PubMed ID: 15242454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.
    Zhang W; Morales VL; Cakmak ME; Salvucci AE; Geohring LD; Hay AG; Parlange JY; Steenhuis TS
    Environ Sci Technol; 2010 Jul; 44(13):4965-72. PubMed ID: 20521810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.