These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 19854467)
41. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California. Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J; Hill MC Environ Sci Technol; 2011 Jul; 45(13):5587-95. PubMed ID: 21634424 [TBL] [Abstract][Full Text] [Related]
42. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. Pelley AJ; Tufenkji N J Colloid Interface Sci; 2008 May; 321(1):74-83. PubMed ID: 18280489 [TBL] [Abstract][Full Text] [Related]
43. Removal of viable and inactivated Cryptosporidium by dual- and tri-media filtration. Emelko MB Water Res; 2003 Jul; 37(12):2998-3008. PubMed ID: 12767303 [TBL] [Abstract][Full Text] [Related]
44. An improved method for the analysis of Cryptosporidium parvum oocysts by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Glassmeyer ST; Ware MW; Schaefer FW; Shoemaker JA; Kryak DD J Eukaryot Microbiol; 2007; 54(6):479-81. PubMed ID: 18070325 [TBL] [Abstract][Full Text] [Related]
45. Influence of surface characteristics on the stability of Cryptosporidium parvum oocysts. Butkus MA; Bays JT; Labare MP Appl Environ Microbiol; 2003 Jul; 69(7):3819-25. PubMed ID: 12839749 [TBL] [Abstract][Full Text] [Related]
46. Role of collector alternating charged patches on transport of Cryptosporidium parvum oocysts in a patchwise charged heterogeneous micromodel. Liu Y; Zhang C; Hu D; Kuhlenschmidt MS; Kuhlenschmidt TB; Mylon SE; Kong R; Bhargava R; Nguyen TH Environ Sci Technol; 2013 Mar; 47(6):2670-8. PubMed ID: 23373745 [TBL] [Abstract][Full Text] [Related]
47. Effect of ferric oxyhydroxide grain coatings on the transport of bacteriophage PRD1 and Cryptosporidium parvum oocysts in saturated porous media. Abudalo RA; Bogatsu YG; Ryan JN; Harvey RW; Metge DW; Elimelech M Environ Sci Technol; 2005 Sep; 39(17):6412-9. PubMed ID: 16190194 [TBL] [Abstract][Full Text] [Related]
48. Effect of bovine manure on Cryptosporidium parvum oocyst attachment to soil. Kuczynska E; Shelton DR; Pachepsky Y Appl Environ Microbiol; 2005 Oct; 71(10):6394-7. PubMed ID: 16204565 [TBL] [Abstract][Full Text] [Related]
49. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Torkzaban S; Bradford SA; Walker SL Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511 [TBL] [Abstract][Full Text] [Related]
50. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
51. Experimental investigations and numerical modelling of Cryptosporidium parvum transport behaviour in aquifers. Marly X; Chevalier S; Buès M; Schwartzbrod J; Estévenon O Water Sci Technol; 2001; 43(12):109-16. PubMed ID: 11464738 [TBL] [Abstract][Full Text] [Related]
52. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. Kamrani S; Rezaei M; Kord M; Baalousha M Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305 [TBL] [Abstract][Full Text] [Related]
53. Developing risk models of Cryptosporidium transport in soils from vegetated, tilted soilbox experiments. Harter T; Atwill ER; Hou L; Karle BM; Tate KW J Environ Qual; 2008; 37(1):245-58. PubMed ID: 18178898 [TBL] [Abstract][Full Text] [Related]
54. Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Lee LY; Ong SL; Hu JY; Ng WJ; Feng Y; Tan X; Wong SW Appl Environ Microbiol; 2004 Oct; 70(10):5732-6. PubMed ID: 15466507 [TBL] [Abstract][Full Text] [Related]
55. Bacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein. Gargiulo G; Bradford S; Simůnek J; Ustohal P; Vereecken H; Klumpp E J Contam Hydrol; 2007 Jul; 92(3-4):255-73. PubMed ID: 17337313 [TBL] [Abstract][Full Text] [Related]
56. Transport and retention of a bacteriophage and microspheres in saturated, angular porous media: effects of ionic strength and grain size. Knappett PS; Emelko MB; Zhuang J; McKay LD Water Res; 2008 Oct; 42(16):4368-78. PubMed ID: 18760817 [TBL] [Abstract][Full Text] [Related]
57. Effect of tillage and rainfall on transport of manure-applied Cryptosporidium parvum oocysts through soil. Ramirez NE; Wang P; Lejeune J; Shipitalo MJ; Ward LA; Sreevatsan S; Dick WA J Environ Qual; 2009; 38(6):2394-401. PubMed ID: 19875795 [TBL] [Abstract][Full Text] [Related]
58. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size. Wang C; Bobba AD; Attinti R; Shen C; Lazouskaya V; Wang LP; Jin Y Environ Sci Technol; 2012 Jul; 46(13):7151-8. PubMed ID: 22642719 [TBL] [Abstract][Full Text] [Related]
59. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment. McLaughlin SJ; Kalita PK; Kuhlenschmidt MS J Environ Manage; 2013 Dec; 131():121-8. PubMed ID: 24157412 [TBL] [Abstract][Full Text] [Related]
60. Concentration dependent transport of colloids in saturated porous media. Bradford SA; Bettahar M J Contam Hydrol; 2006 Jan; 82(1-2):99-117. PubMed ID: 16290313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]