These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 19854569)
1. Kinetic study of the oxidation and nitration of catechols in the presence of nitrous acid ionization equilibria. Khalafi L; Rafiee M J Hazard Mater; 2010 Feb; 174(1-3):801-6. PubMed ID: 19854569 [TBL] [Abstract][Full Text] [Related]
2. Kinetic study of electrochemically induced michael reactions of o-quinones with Meldrum's acid derivatives. Synthesis of highly oxygenated catechols. Nematollahi D; Shayani-jam H J Org Chem; 2008 May; 73(9):3428-34. PubMed ID: 18396907 [TBL] [Abstract][Full Text] [Related]
3. Effect of inclusion complex on nitrous acid reaction with flavonoids. Khalafi L; Rafiee M; Sedaghat S Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):661-5. PubMed ID: 21782497 [TBL] [Abstract][Full Text] [Related]
4. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. O'Donnell VB; Eiserich JP; Chumley PH; Jablonsky MJ; Krishna NR; Kirk M; Barnes S; Darley-Usmar VM; Freeman BA Chem Res Toxicol; 1999 Jan; 12(1):83-92. PubMed ID: 9894022 [TBL] [Abstract][Full Text] [Related]
5. Nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution. Vione D; Maurino V; Minero C; Lucchiari M; Pelizzetti E Chemosphere; 2004 Sep; 56(11):1049-59. PubMed ID: 15276718 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods. Biegunski AT; Michota A; Bukowska J; Jackowska K Bioelectrochemistry; 2006 Sep; 69(1):41-8. PubMed ID: 16423566 [TBL] [Abstract][Full Text] [Related]
7. Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group? Peri L; Pietraforte D; Scorza G; Napolitano A; Fogliano V; Minetti M Free Radic Biol Med; 2005 Sep; 39(5):668-81. PubMed ID: 16085185 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of nitrous acid-dependent tyrosine nitration and DNA base deamination by flavonoids and other phenolic compounds. Oldreive C; Zhao K; Paganga G; Halliwell B; Rice-Evans C Chem Res Toxicol; 1998 Dec; 11(12):1574-9. PubMed ID: 9860503 [TBL] [Abstract][Full Text] [Related]
9. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction. Takahama U; Yamamoto A; Hirota S; Oniki T J Agric Food Chem; 2003 Sep; 51(20):6014-20. PubMed ID: 13129310 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic studies on the interaction of reduced cobalamin (vitamin B12r) with nitroprusside. Wolak M; Stochel G; van Eldik R J Am Chem Soc; 2003 Feb; 125(5):1334-51. PubMed ID: 12553836 [TBL] [Abstract][Full Text] [Related]
11. Effect of *NO on the decomposition of peroxynitrite: reaction of N2O3 with ONOO-. Goldstein S; Czapski G; Lind J; Merényi G Chem Res Toxicol; 1999 Feb; 12(2):132-6. PubMed ID: 10027789 [TBL] [Abstract][Full Text] [Related]
12. Effect of β-cyclodextrin on intra and intermolecular Michael addition of some catechol derivatives. Khalafi L; Rafiee M; Fathi S Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():695-701. PubMed ID: 24096065 [TBL] [Abstract][Full Text] [Related]
13. Electrosynthesis of symmetric and highly conjugated benzofuran via a unique ECECCC electrochemical mechanism: evidence for predominance of electrochemical oxidation versus intramolecular cyclization. Nematollahi D; Amani A; Tammari E J Org Chem; 2007 May; 72(10):3646-51. PubMed ID: 17419647 [TBL] [Abstract][Full Text] [Related]
14. Binding of catechols to mononuclear titanium(IV) and to 1- and 5-nm TiO2 nanoparticles. Creutz C; Chou MH Inorg Chem; 2008 May; 47(9):3509-14. PubMed ID: 18366179 [TBL] [Abstract][Full Text] [Related]
15. Ab initio procedure for aqueous-phase pKa calculation: the acidity of nitrous acid. da Silva G; Kennedy EM; Dlugogorski BZ J Phys Chem A; 2006 Oct; 110(39):11371-6. PubMed ID: 17004748 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical oxidation of catechols in the presence of phenyl-Meldrum's acid. Synthesis and kinetic evaluation. Nematollahi D; Bamzadeh M; Shayani-Jam H Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):23-6. PubMed ID: 20045960 [TBL] [Abstract][Full Text] [Related]
17. Effect of group II metal cations on catecholate oxidation. Lebedev AV; Ivanova MV; Timoshin AA; Ruuge EK Chemphyschem; 2007 Aug; 8(12):1863-9. PubMed ID: 17634998 [TBL] [Abstract][Full Text] [Related]
19. Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Briviba K; Kissner R; Koppenol WH; Sies H Chem Res Toxicol; 1998 Dec; 11(12):1398-401. PubMed ID: 9860480 [TBL] [Abstract][Full Text] [Related]
20. The influence of solution-phase HNO2 decomposition on the electrocatalytic nitrite reduction at a hemin-pyrolitic graphite electrode. Duca M; Khamseh S; Lai SC; Koper MT Langmuir; 2010 Jul; 26(14):12418-24. PubMed ID: 20415442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]